Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
DNA-based data storage has emerged as a promising method to satisfy the exponentially increasing demand for information storage. However, practical implementation of DNA-based data storage remains a challenge because of the high cost of data writing through DNA synthesis. Here, we propose the use of degenerate bases as encoding characters in addition to A, C, G, and T, which augments the amount of data that can be stored per length of DNA sequence designed (information capacity) and lowering the amount of DNA synthesis per storing unit data. Using the proposed method, we experimentally achieved an information capacity of 3.37 bits/character. The demonstrated information capacity is more than twice when compared to the highest information capacity previously achieved. The proposed method can be integrated with synthetic technologies in the future to reduce the cost of DNA-based data storage by 50%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488701 | PMC |
http://dx.doi.org/10.1038/s41598-019-43105-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!