Solvent-less synthesis of nanostructures is highly significant due to its economical, eco-friendly and industrially viable nature. Here we report a solid state synthetic approach for the fabrication of FeO@M (where M = Au, Ag and Au-Ag alloy) core-shell nanostructures in nearly quantitative yields that involves a simple physical grinding of a metal precursor over FeO core, followed by calcination. The process involves smooth coating of low melting hybrid organic-inorganic precursor over the FeO core, which in turn facilitates a continuous shell layer post thermolysis. The obtained core-shell nanostructures are characterized using, XRD, XPS, ED-XRF, FE-SEM and HR-TEM for their phase, chemical state, elemental composition, surface morphology, and shell thickness, respectively. Homogeneous and continuous coating of the metal shell layer over a large area of the sample is ascertained by SAXS and STEM analyses. The synthesized catalysts have been studied for their applicability towards a model catalytic hydrogen generation from NHBH and NaBH as hydrogen sources. The catalytic efficacy of the FeO@Ag and Ag rich alloy shell materials are found to be superior to the corresponding Au counterparts. The saturation magnetization studies reveal the potential of the core-shell nanostructured catalysts to be magnetically recoverable and recyclable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488626 | PMC |
http://dx.doi.org/10.1038/s41598-019-43116-7 | DOI Listing |
Mikrochim Acta
January 2025
College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
Due to the high mortality rate of ovarian cancer, there is a need to find novel strategies to improve current treatment modalities. Natural compounds offer great potential in this field but also require the careful design of systems for their delivery to cancer cells. Our study explored the anticancer effects of novel resveratrol (RSV)- and curcumin (CUR)-loaded core-shell nanoparticles in human ovarian cancer cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.
View Article and Find Full Text PDFSmall
January 2025
Department of Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, 500007, India.
Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland.
This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!