Endothelial dysfunction is a core pathophysiologic process in pulmonary arterial hypertension (PAH). We developed PulmoBind (PB), a novel imaging biomarker of the pulmonary vascular endothelium. Technetium (Tc)-labelled PB binds to adrenomedullin receptors (AM) densely expressed in the endothelium of alveolar capillaries. We evaluated the effect of sildenafil on AM receptors activity using Tc-PB. PAH was induced in rats using the Sugen/hypoxia model and after 3 weeks, animals were allocated to sildenafil (25 or 100 mg/kg/day) for 4 weeks. Tc-PB uptake kinetics was assessed by single-photon emission computed tomography. PAH caused right ventricular (RV) hypertrophy that was decreased by low and high sildenafil doses. Sildenafil low and high dose also improved RV function measured from the tricuspid annulus plane systolic excursion. Mean integrated pulmonary uptake of Tc-PB was reduced in PAH (508% · min ± 37, p < 0.05) compared to controls (630% · min ± 30), but unchanged by sildenafil at low and high doses. Lung tissue expressions of the AM receptor components were reduced in PAH and also unaffected by sildenafil. In experimental angio-proliferative PAH, sildenafil improves RV dysfunction and remodeling, but does not modify pulmonary vascular endothelium dysfunction assessed by the adrenomedullin receptor ligand Tc-PB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488585PMC
http://dx.doi.org/10.1038/s41598-019-43225-3DOI Listing

Publication Analysis

Top Keywords

low high
8
sildenafil
5
pulmobind imaging
4
imaging measures
4
measures reduction
4
reduction vascular
4
vascular adrenomedullin
4
adrenomedullin receptor
4
receptor activity
4
activity lack
4

Similar Publications

Ultralow Power Cold-Fuse Memory Based on Metal-Oxide-CNT Structure.

Nano Lett

January 2025

Key Lab for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China.

One-time programmable (OTP) memory is an essential component in chips, which has extremely high security to protect the stored critical information from being altered. However, traditional OTP memory based on the thermal breakdown of the dielectric has a large programming current, which leads to high power consumption. Here, we report a gate tunneling-induced "cold" breakdown phenomenon in carbon nanotube (CNT) field-effect transistors, and based on this we construct a "cold" fuse (C-fuse) memory where applying a mild gate voltage can break down the CNT channel without damaging the gate dielectric.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.

View Article and Find Full Text PDF

Deep learning-based design and experimental validation of a medicine-like human antibody library.

Brief Bioinform

November 2024

Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.

Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).

View Article and Find Full Text PDF

Background: A modified computed tomography angiography (CTA)-based Carotid Plaque Reporting and Data System (Plaque-RADS) classification was applied to a cohort of patients with embolic stroke of undetermined source to test whether high-risk Plaque-RADS subtypes are more prevalent on the ipsilateral side of stroke. With the widespread use of CTA for stroke evaluation, a CTA-based Plaque-RADS would be valuable for generalizability.

Methods: A retrospective observational cross-sectional study was conducted at a single integrated health system comprised of 3 hospitals with a comprehensive stroke center between October 1, 2015, and April 1, 2017.

View Article and Find Full Text PDF

Low-energy photoredox catalysis has gained significant attention in developing organic transformations due to its ability to achieve high penetration depth and minimum health risks. Herein, we disclose a red-light ( = 640 nm)-mediated C-3 formylation of indoles utilizing a helical carbenium ion as a photocatalyst and 2,2-dimethoxy-,-dimethylethanamine as a formylating source. These protocols exhibit a broad substrate scope under mild conditions with efficient scalability for the synthesis of C-3 formylated indoles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!