Discerning the mechanism of action of HtrA4: a serine protease implicated in the cell death pathway.

Biochem J

Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India

Published: May 2019

High-temperature requirement protease A4 (HtrA4) is a secretary serine protease whose expression is up-regulated in pre-eclampsia (PE) and hence is a possible biomarker of PE. It has also been altered in cancers such as glioblastoma, breast carcinoma, and prostate cancer making it an emerging therapeutic target. Among the human HtrAs, HtrA4 is the least characterized protease pertaining to both structure and its functions. Although the members of human HtrA family share a significant structural and functional conservation, subtle structural changes have been associated with certain distinct functional requirements. Therefore, intricate dissection of HtrA4 structural and functional properties becomes imperative to understand its role in various biological and pathophysiological processes. Here, using inter-disciplinary approaches including , biochemical and biophysical studies, we have done a domain-wise dissection of HtrA4 to delineate the roles of the domains in regulating oligomerization, stability, protease activity, and specificity. Our findings distinctly demonstrate the importance of the N-terminal region in oligomerization, stability and hence the formation of a functional enzyme. structural comparison of HtrA4 with other human HtrAs, enzymology studies and cleavage assays with X-linked inhibitor of apoptosis protein (XIAP) show overall structural conservation and allosteric mode of protease activation, which suggest functional redundancy within this protease family. However, significantly lower protease activity as compared with HtrA2 indicates an additional mode of regulation of the protease activity in the cellular milieu. Overall, these studies provide first-hand information on HtrA4 and its interaction with antiapoptotic XIAP thus implicating its involvement in the apoptotic pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BCJ20190224DOI Listing

Publication Analysis

Top Keywords

protease activity
12
protease
9
serine protease
8
human htras
8
structural functional
8
dissection htra4
8
oligomerization stability
8
htra4
7
structural
5
functional
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!