A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Active-Site Tryptophan, the Target of Antineoplastic C-Terminal Binding Protein Inhibitors, Mediates Inhibitor Disruption of CtBP Oligomerization and Transcription Coregulatory Activities. | LitMetric

Active-Site Tryptophan, the Target of Antineoplastic C-Terminal Binding Protein Inhibitors, Mediates Inhibitor Disruption of CtBP Oligomerization and Transcription Coregulatory Activities.

Mol Pharmacol

Departments of Internal Medicine (M.M.D., P.K.D., Z.N., M.J.D., S.J.S., S.R.G.), Human and Molecular Genetics (B.L.M., S.R.G.), Physiology and Biophysics (F.Z.-P., C.E.), Medicinal Chemistry (S.K., K.C.E.), and Biostatistics (X.D., D.B.) and Massey Cancer Center (K.C.E., D.B., C.E., S.R.G.), Virginia Commonwealth University, Richmond, Virginia; and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts (W.E.R.)

Published: July 2019

C-terminal binding proteins (CtBP1/2) are oncogenic transcriptional coregulators and dehydrogenases often overexpressed in multiple solid tumors, including breast, colon, and ovarian cancer, and associated with poor survival. CtBPs act by repressing expression of genes responsible for apoptosis (e.g., PUMA, BIK) and metastasis-associated epithelial-mesenchymal transition (e.g., CDH1), and by activating expression of genes that promote migratory and invasive properties of cancer cells (e.g., TIAM1) and genes responsible for enhanced drug resistance (e.g., MDR1). CtBP's transcriptional functions are also critically dependent on oligomerization and nucleation of transcriptional complexes. Recently, we have developed a family of CtBP dehydrogenase inhibitors, based on the parent 2-hydroxyimino-3-phenylpropanoic acid (HIPP), that specifically disrupt cancer cell viability, abrogate CtBP's transcriptional function, and block polyp formation in a mouse model of intestinal polyposis that depends on CtBP's oncogenic functions. Crystallographic analysis revealed that HIPP interacts with CtBP1/2 at a conserved active site tryptophan (W318/324; CtBP1/2) that is unique among eukaryotic D2-dehydrogenases. To better understand the mechanism of action of HIPP-class inhibitors, we investigated the contribution of W324 to CtBP2's biochemical and physiologic activities utilizing mutational analysis. Indeed, W324 was necessary for CtBP2 self-association, as shown by analytical ultracentrifugation and in vivo cross-linking. Additionally, W324 supported CtBP's association with the transcriptional corepressor CoREST, and was critical for CtBP2 induction of cell motility. Notably, the HIPP derivative 4-chloro-HIPP biochemically and biologically phenocopied mutational inactivation of CtBP2 W324. Our data support further optimization of W318/W324-interacting CtBP dehydrogenase inhibitors that are emerging as a novel class of cancer cell-specific therapeutic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560337PMC
http://dx.doi.org/10.1124/mol.118.114363DOI Listing

Publication Analysis

Top Keywords

c-terminal binding
8
expression genes
8
genes responsible
8
ctbp's transcriptional
8
ctbp dehydrogenase
8
dehydrogenase inhibitors
8
transcriptional
5
active-site tryptophan
4
tryptophan target
4
target antineoplastic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!