The long-standing view that Mesozoic mammaliaforms living in dinosaur-dominated ecosystems were ecologically constrained to small size and insectivory has been challenged by astonishing fossil discoveries over the last three decades. By studying these well-preserved early mammaliaform specimens, paleontologists now agree that mammaliaforms underwent ecomorphological diversification during the Mesozoic Era. This implies that Mesozoic mammaliaform communities had ecological structure and breadth that were comparable to today's small-bodied mammalian communities. However, this hypothesis remains untested in part because the primary focus of most studies is on individual taxa. Here, we present a study quantifying the ecological structure of Mesozoic mammaliaform communities with the aim of identifying evolutionary and ecological drivers that influenced the deep-time assembly of small-bodied mammaliaform communities. We used body size, dietary preference, and locomotor mode to establish the ecospace occupation of 98 extant, small-bodied mammalian communities from diverse biomes around the world. We calculated ecological disparity and ecological richness to measure the magnitude of ecological differences among species in a community and the number of different eco-cells occupied by species of a community, respectively. This modern dataset served as a reference for analyzing five exceptionally preserved, extinct mammaliaform communities (two Jurassic, two Cretaceous, one Eocene) from Konservat-Lagerstätten. Our results indicate that the interplay of at least three factors, namely the evolution of the tribosphenic molar, the ecological rise of angiosperms, and potential competition with other vertebrates, may have been critical in shaping the ecological structure of small-bodied mammaliaform communities through time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525522 | PMC |
http://dx.doi.org/10.1073/pnas.1820863116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!