Green and low-cost synthesis of nitrogen-doped graphene-like mesoporous nanosheets from the biomass waste of okara for the amperometric detection of vitamin C in real samples.

Talanta

Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, PR China; School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, Jilin Province 130022, PR China. Electronic address:

Published: August 2019

In this work, the low-cost nitrogen-doped graphene-like mesoporous nanosheets (N-GMNs) was synthesized from the biomass waste of okara for the first time for the construction of a nonenzymatic amperometric vitamin C biosensor. The N-GMNs modified glassy carbon electrode (N-GMNs/GCE) shows much lower overpotential for the electrooxidation of vitamin C comparing to the traditional GCE as well as the GCE modified by carbon nanotubes (CNTs/GCE), indicating the promising of N-GMNs/GCE for the sensitive and selective nonenzymatic amperometric vitamin C biosensing. As a nonenzymatic amperometric biosensor for vitamin C, the N-GMNs/GCE shows a higher sensitivity (144.65 μA mM cm), a wider linear range (10-5640 μmol L) and a lower detection limit (0.51 μmol L) than GCE, CNTs/GCE or some of recently reported nanomaterials-based electrochemical vitamin C biosensors. Especially, the vitamin C concentration in real samples of commercial beverage, vitamin C injection and commercial juice can be determined by the proposed N-GMNs/GCE with satisfied results. Therefore, the utilization of okara as the raw material for the synthesis of nanostructured carbon of N-GMNs is a green method to fabricate an advanced and low-cost electrode material for developing the nonenzymatic electrochemical biosensor for vitamin C detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2019.03.071DOI Listing

Publication Analysis

Top Keywords

nonenzymatic amperometric
12
vitamin
9
nitrogen-doped graphene-like
8
graphene-like mesoporous
8
mesoporous nanosheets
8
biomass waste
8
waste okara
8
real samples
8
amperometric vitamin
8
biosensor vitamin
8

Similar Publications

Article Synopsis
  • Glucose sensing is essential for managing diabetes, and this study explores NbCT-selenium nanoparticles for effective nonenzymatic glucose detection.
  • The composite material was characterized using techniques like scanning and transmission electron microscopy, and it was tested on a gold disc electrode in an alkaline solution.
  • The sensor operates at a low overpotential of 0.16 V, demonstrating a detection range of 2 to 30 mM, with a notable sensitivity of 4.15 µA mM cm and a detection limit of 1.1 mM.
View Article and Find Full Text PDF

Schottky Interface Enabled Electrospun Rhodium Oxide Doped Gold for Both pH Sensing and Glucose Measurements in Neutral Buffer and Human Serum.

Langmuir

October 2024

Department of Chemistry, School of Science, Xi'an Jiaotong-Liverpool University, No. 111 Ren'ai Road, Suzhou Industrial Park, Dushu Lake Higher Education and Innovation Park, Suzhou 215123, Jiangsu Province, People's Republic of China.

This study has focused on adjusting sensing environment from basic to neutral pH and improve sensing performance by doping electrodeposited gold (Au) with metal oxide for nonenzymatic glucose measurements in forming a Schottky interface for superior glucose sensing with detailed analysis for the sensing mechanism. The prepared sensor also holds the ability to measure pH with the identical electrospun metal oxide-electrodeposited Au, which composed a dual sensor (glucose and pH sensor) through applying chronoamperometry and open circuit potential methods. The rhodium oxide nanocoral structure was fabricated with an electrospinning precursor solution, followed by a calcination process, and it was mixed with electrodeposited nanocoral gold to form the Schottky interface by constructing a p-n type heterogeneous junction for improved sensitivity in glucose detection.

View Article and Find Full Text PDF

Double-Cabin Galvanic Cell-Synthesizing Nanoporous, Flower-like, Pb-Containing Pd-Au Nanoparticles for Nonenzymatic Formaldehyde Sensor.

Molecules

June 2024

Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.

In this work, a novel formaldehyde sensor was constructed based on nanoporous, flower-like, Pb-containing Pd-Au nanoparticles deposited on the cathode in a double-cabin galvanic cell (DCGC) with a Cu plate as the anode, a multiwalled carbon nanotube-modified glassy carbon electrode as the cathode, a 0.1 M HClO aqueous solution as the anolyte, and a 3.0 mM PdCl + 1.

View Article and Find Full Text PDF

Glycerol is a widely used signaling bioanalyte in biotechnology. Glycerol can serve as a substrate or product of many metabolic processes in cells. Therefore, quantification of glycerol in fermentation samples with inexpensive, reliable, and rapid sensing systems is of great importance.

View Article and Find Full Text PDF

This work explores the use of MXene-embedded porous carbon-based CuO nanocomposite (CuO/M/AC) as a sensing material for the electrochemical sensing of glucose. The composite was prepared using the coprecipitation method and further analyzed for its morphological and structural characteristics. The highly porous scaffold of activated (porous) carbon facilitated the incorporation of MXene and copper oxide inside the pores and also acted as a medium for charge transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!