A series of self-immolative linkers containing a thiol-reactive group at one end and a hydroxyl- or amine-reactive group at the other were prepared. The utility of these reagents for preparations of bioconjugates was explored by reacting the linkers with appropriately functionalized model drugs and peptides. Degradation studies of a series of conjugates with different linkers reveal that the structure of the linkers has a significant impact on their stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.bioconjchem.9b00214 | DOI Listing |
Tetrahedron
February 2025
Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States.
Antibody-drug conjugates (ADCs) have advanced as a mainstay among the most promising cancer therapeutics, offering enhanced antigen targeting and encompassing wide diversity in their linker and payload components. Small-molecule inhibitors of tubulin polymerization have found success as payloads in FDA approved ADCs and represent further promise in next-generation, pre-clinical and developmental ADCs. Unique dual-mechanism payloads (previously designed and synthesized in our laboratories) function as both potent antiproliferative agents and promising vascular disrupting agents capable of imparting selective and effective damage to tumor-associated microvessels.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.).
Boronic acids have been widely applied in various biological fields, particularly achieving significant practical progress in boronic acid-based glucose sensing. However, boronic acids exhibit nonspecific binding to other nucleophiles, and the inherent lability of boronic esters in biological systems limits their further applications. Herein, we developed a stimuli-responsive controllable caging strategy to achieve photoresponsive spatiotemporally and nitroreductase-responsive cancer cell-selective glucose sensing.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada.
Flexible sensors have garnered significant interest for their potential to monitor human activities and provide valuable feedback for healthcare purposes. Single-walled carbon nanotubes (SWNTs) are promising materials for these applications but suffer from issues of poor purity and solubility. Dispersing SWNTs with conjugated polymers (CPs) enhances solution processability, yet the polymer sidechains can insulate the SWNTs, limiting the sensor's operating voltage.
View Article and Find Full Text PDFJ Med Chem
December 2024
National Key Laboratory of Green Pesticide, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, P. R. China.
The controlled release of immunostimulatory agents represents a promising strategy to enhance vaccine efficacy while minimizing side effects. This study aimed to improve the efficacy of the RBD-Fc-based COVID-19 vaccine through combining of an iNKT cell agonist and a TLR7/8 agonist using covalent conjugation and temporal delivery. We hypothesized that these combinations would yield a more balanced Th1/Th2 immune response.
View Article and Find Full Text PDFChem Asian J
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
Stimuli-responsive prodrugs of anticancer drugs are advantageous for the selective delivery of drugs to cancer cells with minimized off-target side effects. In the present study, esterase-activatable fluorogenic prodrugs of the chemotherapeutic drug 5-fluorouracil (5-FU) have been rationally designed and synthesized using multi-step organic synthesis. While 5-FU was connected directly with the fluorophore via a C-N bond in the prodrug BJ-50, an additional self-immolative benzylic spacer with a carbonate linker was incorporated in the prodrug BJ-92.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!