AI Article Synopsis

Article Abstract

Copper(II) complexes bearing nonsteroidal anti-inflammatory drugs (NSAIDs) are known to potently kill cancer stem cells (CSCs), a subpopulation of tumour cells with high metastatic and relapse fidelity. One of the major disadvantages associated to these copper(II) complexes is their instability in the presence of strong cellular reductants (such as ascorbic acid). Here we present a biologically stable copper(II)-NSAID complex containing a bathocuproinedisulfonic acid disodium ligand and two indomethacin moieties, Cu(bathocuproinedisulfonic acid disodium)(indomethacin), . The copper(II) complex, kills bulk breast cancer cells and breast CSC equally (in the sub-micromolar range) and displays very low toxicity against non-tumorigenic breast and kidney cells (IC value > 100 µM). Three-dimensional cell culture studies show that can significantly reduce the number and size of breast CSC mammospheres formed (from single suspensions) to a similar level as salinomycin (an established anti-breast CSC agent). The copper(II) complex, is taken up reasonably by breast CSCs and localises largely in the cytoplasm (>90%). Cytotoxicity studies in the presence of specific inhibitors suggest that induces CSC death via a reactive oxygen species (ROS) and cyclooxygenase isoenzyme-2 (COX-2) dependent apoptosis pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540347PMC
http://dx.doi.org/10.3390/molecules24091677DOI Listing

Publication Analysis

Top Keywords

cancer stem
8
copperii complexes
8
copperii complex
8
breast csc
8
breast
5
modulating chemical
4
chemical biological
4
biological properties
4
properties cancer
4
stem cell-potent
4

Similar Publications

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Background/objectives: Effectively targeting treatment-resistant tumor cells, particularly cancer stem cells (CSCs) involved in tumor recurrence, remains a major challenge in immunotherapy. This study examines the potential of combining mechanical high-intensity focused ultrasound (M-HIFU) with dendritic cell (DC) vaccines to enhance immune responses against OLFM4-expressing tumors, a CSC marker linked to immune evasion and tumor growth.

Methods: M-HIFU was applied to induce immunogenic cell death by mechanically disrupting tumor cells, releasing tumor-associated antigens and creating an immunostimulatory environment.

View Article and Find Full Text PDF

: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. : The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation.

View Article and Find Full Text PDF

Background/objectives: Glioblastoma multiforme (GBM) is the most common high-grade primary brain cancer in adults. Despite efforts to advance treatment, GBM remains treatment resistant and inevitably progresses after first-line therapy. Induced neural stem cell (iNSC) therapy is a promising, personalized cell therapy approach that has been explored to circumvent challenges associated with the current GBM treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!