A novel method for the production of important medical radioisotopes has been developed. The approach is based on performing the nuclear reaction in inverse kinematics, namely sending a heavy-ion beam of appropriate energy on a light target (e.g. H, d, He) and collecting the isotope of interest. In this work, as a proof-of-concept, we studied the production of the theranostic radionuclide Cu (T = 62 h) via the reaction of a Zn beam at 15 MeV/nucleon with a hydrogen gas target. The Cu radionuclide alongside other coproduced isotopes, was collected after the gas target on an aluminum catcher foil and their radioactivity was measured by off-line γ-ray analysis. After 36 h post irradiation, apart from the product of interest Cu, the main radioimpurity coming from the Zn + p reaction was Zn (T = 13.8 h), which can be reduced by further radio-cooling. Moreover, along with the radionuclide of interest produced in inverse kinematics, the production of additional radioisotopes is possible by making use of the forward-focused neutrons from the reaction and allowing them to interact with a secondary target. A preliminary successful test of this concept was realized in the present study. The main requirement to obtain activities appropriate for preclinical studies is the development of high-intensity heavy-ion primary beams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2019.04.019 | DOI Listing |
Sports Biomech
January 2025
Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, Japan.
We aimed to investigate whether a linear relationship exists between swimming velocity and vertical body position for each stroke phase in front crawl, and to determine whether there are differences in the velocity effect among the stroke phases. Eleven male swimmers performed a 15 m front crawl at various swimming velocities. The whole-body centre of mass (CoM) was estimated from individual digital human models using inverse kinematics.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Biorobotics Laboratory, EPFL, Lausanne, Switzerland.
Humans can perform movements in various physical environments and positions (corresponding to different experienced gravity), requiring the interaction of the musculoskeletal system, the neural system and the external environment. The neural system is itself comprised of several interactive components, from the brain mainly conducting motor planning, to the spinal cord (SC) implementing its own motor control centres through sensory reflexes. Nevertheless, it remains unclear whether similar movements in various environmental dynamics necessitate adapting modulation at the brain level, correcting modulation at the spinal level, or both.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Chronic allodynia stemming from peripheral stump neuromas can persist for extended periods, significantly compromising patients' quality of life. Conventional managements for nerve stumps have demonstrated limited effectiveness in ensuring their orderly termination. In this study, we present a spatially confined conduit strategy, designed to enhance the self-organization of regenerating nerves after truncation.
View Article and Find Full Text PDFLife Sci Alliance
March 2025
https://ror.org/003412r28 CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
Mechanical stresses, including compression, arise during cancer progression. In solid cancer, especially breast and pancreatic cancers, the rapid tumor growth and the environment remodeling explain their high intensity of compressive forces. However, the sensitivity of compressed cells to targeted therapies remains poorly known.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Head and Neck Surgery and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
The relative accessibility and simplicity of vestibular sensing and vestibular-driven control of head and eye movements has made the vestibular system an attractive subject to experimenters and theoreticians interested in developing realistic quantitative models of how brains gather and interpret sense data and use it to guide behavior. Head stabilization and eye counter-rotation driven by vestibular sensory input in response to rotational perturbations represent natural, ecologically important behaviors that can be reproduced in the laboratory and analyzed using relatively simple mathematical models. Models drawn from dynamical systems and control theory have previously been used to analyze the behavior of vestibular sensory neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!