The inflammation-induced the excessive proliferation and migration of airway smooth muscle (ASM) cells in the airway wall contribute to airway remodeling in asthma pathogenesis. SET domain-containing lysine methyltransferase 7 (SETD7) has emerged as one of the key regulators of inflammation. Yet, the function of SETD7 in regulating inflammation-induced ASM cell proliferation and invasion remains unclear. In the present study, we aimed to investigate the function of SETD7 in regulating ASM cell proliferation and invasion induced by tumor necrosis factor (TNF)-α in vitro. Our results showed that SETD7 expression was upregulated in ASM cells stimulated with TNF-α. Silencing SETD7 significantly decreased TNF-α-induced ASM cell proliferation and migration, while SETD7 overexpression exhibited the opposite effect. Notably, silencing SETD7 decreased the activation of nuclear factor (NF)-κB and reduced the expression of CD38 induced by TNF-α. Blocking NF-κB activation significantly abrogated the promotional effect of SETD7 overexpression on CD38 expression. Moreover, overexpression of CD38 partially reversed the inhibitory effect of SETD7 silencing on TNF-α-induced ASM cell proliferation and migration. Overall, these results demonstrate that SETD7 regulates TNF-α-induced ASM cell proliferation and migration through modulation of NF-κB/CD38 signaling, suggesting a potential role of SETD7 in asthma airway remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2019.04.043DOI Listing

Publication Analysis

Top Keywords

proliferation migration
20
asm cell
20
cell proliferation
20
setd7
12
tnf-α-induced asm
12
migration airway
8
airway smooth
8
smooth muscle
8
nf-κb/cd38 signaling
8
asm cells
8

Similar Publications

Long non-coding RNAs (lncRNAs) have emerged as pivotal regulatory molecules in cancer biology. Among these, long intergenic non-protein coding RNA 02418 (LINC02418), a recently identified lncRNA, has been linked to endometrial cancer (EC), although its function and operational mechanisms are largely unclear. The present investigation aims to elucidate the molecular mechanism through which LINC02418 influences EC pathogenesis.

View Article and Find Full Text PDF

Background/aims: Cholangiocarcinoma (CCA) is a malignant and insidious tumor that is tricky to treat. Long non-coding RNA (LncRNA) LINC01123 is a biomolecule that influences cancer progression by regulating gene expression via influencing the regulatory function of microRNAs in gene expression. Therefore, this study investigated the connection between LINC01123 and CCA and explored the underlying mechanism.

View Article and Find Full Text PDF

Background/aims: Colon adenocarcinoma (COAD) is a prevalent malignant tumor of the digestive system. Previous research has indicated that RNA N6-methyladenosine (m6A) methyltransferase RNA-binding motif protein-15 (RBM15) is involved in various cancers. We aimed to investigate the function of RBM15 in COAD progression and its underlying molecular mechanism.

View Article and Find Full Text PDF

miR-224-5p Suppresses Non-Small Cell Lung Cancer via IL6ST-Mediated Regulation of the JAK2/STAT3 Pathway.

Thorac Cancer

January 2025

Department of Thoracic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.

Background: Our study aimed to explore the specific functions and potential mechanisms of miR-224-5p in non-small cell lung cancer (NSCLC).

Methods: We first analyzed the expression of miR-224-5p in NSCLC patients and cell lines through the GEO database and qRT-PCR analysis. Then, we used MTT assays, wound healing assays, Transwell assays, and western blotting to evaluate the effects of miR-224-5p on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!