Cumulative ultraviolet (UV) exposure is associated with squamous skin cell carcinoma. UV radiation induces oxidative modifications in biomolecules of the skin leading to photocarcinogenesis. Indeed, the cyclobutene pyrimidine dimers and other dimers formed by photoaddition between carbon-carbon bonds also have an important role in the initiation process. However, information on the systemic redox status during these processes is scarce. Thus, we investigated the systemic redox profile in UVB-induced squamous cell carcinoma in mice. Female hairless mice were exposed to UVB radiation (cumulative dose = 17.1 J/cm). The dorsal skin of these mice developed actinic keratosis (AK) and squamous cell carcinoma (SCC) and presented increased levels of oxidative and nitrosative stress biomarkers (4-hydroxy-2-nonenal and 3-nitrotyrosine), and decreased antioxidant defenses. Systemically, we observed the consumption of plasmatic antioxidant defenses and increased levels of advanced oxidized protein products (AOPP), an oxidative stress product derived from systemic inflammatory response. Taken together, our results indicate that UVB chronic irradiation leads not only to adjacent and tumoral oxidative stress in the skin, but it systemically is reflected through the blood. These new findings clarify some aspects of the pathogenesis of SCC and should assist in formulating better chemoprevention strategies, while avoiding additional primary SCC development and metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2019.04.007 | DOI Listing |
Trends Cancer
December 2024
Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:
In 1982, the RAS genes HRAS and KRAS were discovered as the first human cancer genes, with KRAS later identified as one of the most frequently mutated oncogenes. Yet, it took nearly 40 years to develop clinically effective inhibitors for RAS-mutant cancers. The discovery in 2013 by Shokat and colleagues of a druggable pocket in KRAS paved the way to FDA approval of the first covalently binding KRAS inhibitors, sotorasib and adagrasib, in 2021 and 2022, respectively.
View Article and Find Full Text PDFAllergol Int
December 2024
Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Background: Identification of predictive biomarkers is crucial for formulating preventive interventions and halting the progression of atopic march. Although controversial, the use of accessible markers to predict or detect early onset of atopic diseases is highly desirable. Therefore, this study aimed to investigate whether corneal squamous cell carcinoma antigen-1 (SCCA1) collected from infants can predict the development of atopic dermatitis and food allergy.
View Article and Find Full Text PDFCancer Lett
December 2024
Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong. Electronic address:
Lab Invest
December 2024
Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513 Japan.
Tumor cell nuclear size (NS) indicates malignant potential in breast cancer; however, its clinical significance in esophageal squamous cell carcinoma (ESCC) is unknown. Artificial intelligence (AI) can quantitatively evaluate histopathological findings. The aim was to measure NS in ESCC using AI and elucidate its clinical significance.
View Article and Find Full Text PDFGene
December 2024
Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Department of Clinical Laboratory, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China. Electronic address:
Pre-existing of pulmonary tuberculosis (PTB) poses increased lung cancer risk, yet the molecular mechanisms remain inadequately understood. This study sought to elucidate the potential mechanisms by performing comprehensive analyses of differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) from patients with PTB, lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC). Microarray assays were employed to analyze the DEGs in PBMCs of these patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!