A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Real time monitoring of glucose in whole blood by smartphone. | LitMetric

Real time monitoring of glucose in whole blood by smartphone.

Biosens Bioelectron

ECsens., Department of Analytical Chemistry, Faculty of Science, Campus Fuentenueva, University of Granada, 18071, Spain; Unit of Excellence in Chemistry applied to Biomedicine and the Environment of the University of Granada, Faculty of Sciences, Campus Fuentenueva, University of Granada, 18071, Spain.

Published: July 2019

A combined thread-paper microfluidic device (μTPAD) is presented for the determination of glucose in blood. The device is designed to include all the analytical operations needed: red blood cell separation, conditioning, enzymatic recognition, and colorimetric transduction. The signal is captured with a smartphone or tablet working in video mode and processed by custom Android-based software in real-time. The automatic detection of the region of interest on the thread allows for the use of either initial rate or equilibrium signal as analytical parameters. The time needed for analysis is 12 s using initial rate, and 100 s using the equilibrium measurement with a LOD of 48 μM and 12 μM, respectively, and a precision around 7%. The μTPAD allows a rapid determination of glucose in real samples using only 3 μL of whole blood.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2019.04.024DOI Listing

Publication Analysis

Top Keywords

glucose blood
8
determination glucose
8
initial rate
8
real time
4
time monitoring
4
monitoring glucose
4
blood
4
blood smartphone
4
smartphone combined
4
combined thread-paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!