Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The human gastric pathogen Helicobacter pylori forms biofilms in vitro and in vivo. We previously demonstrated that H. pylori biofilm formation in vitro decreased its susceptibility to clarithromycin (CAM). The aim of this study was to evaluate the effects of biofilm formation on amoxicillin (AMPC) and metronidazole (MNZ) susceptibility. In addition, we assessed the influence of biofilms of CAM resistant H. pylori on CAM susceptibility. It was shown that high levels of efflux pump gene transcripts were detected in biofilm cells of all H. pylori strains used in this study. H. pylori biofilm biomass was significantly decreased compared to initial biomass after treatment with the minimum inhibitory concentration (MIC) of AMPC. Similarly, the biofilm biomass of H. pylori decreased after treatment with MIC of MNZ, although the difference was not statistically significant. However, minimum bactericidal concentrations (MBCs) of AMPC or MNZ to biofilm cells were higher than those of planktonic cells. The biofilm biomasses of all of the CAM resistant strains were significantly decreased compared to initial biomass after treatment with 2x MIC of CAM. However, the viability of the CAM treated biofilm cells with 2x MIC of CAM was not significantly reduced compared to initial cell numbers with the exception of one strain. The viability of biofilm cells of all strains was higher than that of planktonic cells after treatment with various concentrations of CAM. These results indicate that biofilm cells were more resistant to these antibiotics than planktonic cells and that the assessment of the ability to form biofilms in H. pylori is important for eradication of this microorganism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2019.04.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!