Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cobicistat has been reported to increase serum creatinine clinically without affecting glomerular filtration. This was ascribed to transient inhibition of MATE1-mediated renal creatinine secretion. Interestingly, a structurally similar drug, ritonavir, has not been associated with serum creatinine increases at the pharmacoenhancer dose. The present study was aimed to investigate the translation of in vitro MATE1/2K inhibition to clinical creatinine increase (cobicistat) and lack of it (ritonavir) considering their intracellular concentrations in renal proximal tubules. Uptake studies showed ritonavir and cobicistat are unlikely substrates for OCT2. The steady-state unbound concentration in the cytosol of human renal proximal tubule epithelial cells was comparable with the extracellular unbound concentration, suggesting that the entry of these compounds is predominantly mediated by passive diffusion. Ritonavir and cobicistat are MATE1 and MATE2K inhibitors with IC values of 3.1 and 90 μM (ritonavir), and 4.4 and 3.2 μM (cobicistat), respectively. However, the unbound cytosolic concentrations (C) of ritonavir and cobicistat in human renal proximal tubule epithelial cells, 0.065 and 0.10 μM, respectively, after incubation with the clinical maximum total plasma concentrations at pharmacoenhancer doses does not support inhibition in vivo; C >30 fold lower than ICs. These results demonstrate that MATE1/2K inhibition is unlikely the mechanism of the clinical creatinine elevations with cobicistat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2019.04.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!