Recent research on population heterogeneity revealed fascinating insights into microbial behavior. In particular emerging single-cell technologies, image-based microfluidics lab-on-chip systems generate insights with spatio-temporal resolution, which are inaccessible with conventional tools. This review reports recent developments and applications of microfluidic single-cell cultivation technology, highlighting fields of broad interest such as growth, gene expression and antibiotic resistance and susceptibility. Combining advanced microfluidic single-cell cultivation technology for environmental control with automated time-lapse imaging as well as smart computational image analysis offers tremendous potential for novel investigation at the single-cell level. We propose on-chip control of parameters like temperature, gas supply, pressure or a change in cultivation mode providing a versatile technology platform to mimic more complex and natural habitats. Digital analysis of the acquired images is a requirement for the extraction of biological knowledge and statistically reliable results demand for robust and automated solutions. Focusing on microbial cultivations, we compare prominent software systems that emerged during the last decade, discussing their applicability, opportunities and limitations. Next-generation microfluidic devices with a high degree of environmental control combined with time-lapse imaging and automated image analysis will be highly inspiring and beneficial for fruitful interdisciplinary cooperation between microbiologists and microfluidic engineers and image analysts in the field of microbial single-cell analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2019.04.025 | DOI Listing |
Lab Chip
January 2025
Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
Revealing how individual cells alter their secretions over time is crucial for understanding their responses to environmental changes. Key questions include: When do cells modify their functions and states? What transitions occur? Insights into the kinetic secretion trajectories of various cell types are essential for unraveling complex biological systems. This review highlights seven microfluidic technologies for time-resolved single-cell secretion analysis: 1.
View Article and Find Full Text PDFPurpose: In glioblastoma, the therapeutically intractable and resistant phenotypes can be derived from glioma stem cells, which often have different underlying mechanisms from non-stem glioma cells. Aberrant signaling across the EGFR-PTEN-AKT-mTOR pathways have been shown as common drivers of glioblastoma. Revealing the inter and intra-cellular heterogeneity within glioma stem cell populations in relations to signaling patterns through these pathways may be key to precision diagnostic and therapeutic targeting of these cells.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia. Electronic address:
Closed-channel microfluidic systems offer versatile on-chip capabilities for bioanalysis but often face complex fabrication and operational challenges. In contrast, free-boundary off-chip microfluidic platforms are relatively simple to fabricate and operate but lack the ability to perform complex tasks such as on-demand single-target sorting and encapsulation. To address these challenges, we develop an off-chip platform powered by a fluorescent-activated mechanical droplet sorting and production (FAM-DSP) system.
View Article and Find Full Text PDFLab Chip
January 2025
Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia.
Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers.
View Article and Find Full Text PDFLab Chip
January 2025
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
The human body harbors diverse microbial communities essential for maintaining health and influencing disease processes. Droplet microfluidics, a precise and high-throughput platform for manipulating microscale droplets, has become vital in advancing microbiome research. This review introduces the foundational principles of droplet microfluidics, its operational capabilities, and wide-ranging applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!