Graphene exhibits properties of atomic thickness, high transparency, and high carrier mobility, which is highly desirable for a flexible transparent conductive material. However, the electronic properties of large-area chemical vapor deposition grown graphene film suffer from insulated polymer contaminations introduced by the transfer process and the easily cracked nature. Here, we report a preparation method of a transfer-medium-free large-area nanofiber-reinforced graphene (a-PAN/G) film simply by annealing the electrostatically spun polyacrylonitrile (PAN) nanofibers on the graphene film. The film could be free-standing on water and suspended in air with high transparency and enhanced electrical and mechanical properties compared to that of a monolayer graphene film. The flexible transparent a-PAN/G films were demonstrated as active materials for sensitive pressure sensors. The obtained pressure sensors demonstrate high sensitivity (44.5 kPa within 1.2 kPa), low operating voltage (0.01-0.5 V), and excellent stability for 5500 loading-unloading cycles, revealing promising potential applications in wearable electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b00395DOI Listing

Publication Analysis

Top Keywords

graphene film
16
pressure sensors
12
nanofiber-reinforced graphene
8
applications wearable
8
high transparency
8
flexible transparent
8
graphene
6
film
6
transfer-medium-free nanofiber-reinforced
4
film applications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!