A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tunneling Controls the Reaction Pathway in the Deformylation of Aldehydes by a Nonheme Iron(III)-Hydroperoxo Complex: Hydrogen Atom Abstraction versus Nucleophilic Addition. | LitMetric

Mononuclear nonheme iron(III)-hydroperoxo intermediates play key roles in biological oxidation reactions. In the present study, we report the highly intriguing reactivity of a nonheme iron(III)-hydroperoxo complex, [(TMC)Fe(OOH)] (1), in the deformylation of aldehydes, such as 2-phenylpropionaldehyde (2-PPA) and its derivatives; that is, the reaction pathway of the aldehyde deformylation by 1 varies depending on reaction conditions, such as temperature and substrate. At temperature above 248 K, the aldehyde deformylation occurs predominantly via a nucleophilic addition (NA) pathway. However, as the reaction temperature is lowered, the reaction pathway changes to a hydrogen atom transfer (HAT) pathway. Interestingly, the reaction rate becomes independent of temperature below 233 K with a huge kinetic isotope effect (KIE) value of 93 at 203 K, suggesting that the HAT reaction results from tunneling. In contrast, reactions with a deuterated 2-PPA at the α-position and 2-methyl-2-phenylpropionaldehyde proceed exclusively via a NA pathway irrespective of the reaction temperature. We conclude that the bifurcation pathways between NA and HAT result from the tunneling effect in the HAT reaction by 1. To the best of our knowledge, this study reports the first example showing that tunneling plays a significant role in the activation of substrate C-H bonds by a mononuclear nonheme iron(III)-hydroperoxo complex.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b02272DOI Listing

Publication Analysis

Top Keywords

nonheme ironiii-hydroperoxo
16
reaction pathway
12
ironiii-hydroperoxo complex
12
reaction
9
deformylation aldehydes
8
hydrogen atom
8
nucleophilic addition
8
mononuclear nonheme
8
aldehyde deformylation
8
reaction temperature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!