A novel method for the copper-catalyzed oxidative amination of 2'-aminoarylketones with methanol as a C1 carbon source and ammonium acetate as an amine source to construct quinazolines was established in a one-pot manner. The reaction conditions are straightforward and highly atom economic to deliver the corresponding quinazolines in high yields with wide functional group tolerance. Importantly, the present method is applicable on a multigram scale and its synthetic utility is demonstrated by synthesizing quazodine, a muscle-relaxing drug in high yields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9ob00392d | DOI Listing |
J Org Chem
December 2024
State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Gaohai Road, Guiyang 550014, P. R. China.
A copper-catalyzed regioselective annulation reaction, conducted without ligands or oxidants, has been developed for the preparation of multisubstituted furans from the readily available starting materials, β-keto esters and propargyl acetates. This process accommodates a wide range of functional groups, resulting in furan skeletons with diverse substitution patterns. The method's potential synthetic utility is highlighted by its applicability in gram-scale preparations and late-stage modifications of natural products.
View Article and Find Full Text PDFJ Org Chem
December 2024
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
An effective and economical copper-catalyzed approach for the synthesis of phosphorylated 1-isochromenes is reported. This method is the first example of focus on ketone phosphonylation to establish a C-P bond and 6-- cyclization to construct a C-O bond between aryl- and alkyl-substituted alkynylketones and H-phosphinate esters, H-phosphites, and H-phosphine oxides, resulting in chemo- and regioselective phosphorylated 1-isochromenes with moderate to excellent yields under smooth reaction conditions.
View Article and Find Full Text PDFChemMedChem
December 2024
Centre National de la Recherche Scientifique and Strasbourg University, Bio(IN)organic & Medicinal chemistry, European School of Chemistry, Polymers and Materials ECPM , UMR CNRS 7509,, 25, rue Becquerel, 67087, Strasbourg, FRANCE.
This study explores the synthesis and evaluation of novel 1,2,3-triazole-methyl-1,4-naphthoquinone hybrids, focusing on their electrochemical properties and antiparasitic efficacies against two human blood-dwelling parasites Plasmodium falciparum and Schistosoma mansoni. Using copper-catalyzed azide-alkyne cycloaddition (CuAAC), a well-established tool in click chemistry, two synthetic routes were assessed to develop a- and b-[triazole-methyl]-menadione derivatives. By optimizing the CuAAC reaction conditions, yields were significantly improved, reaching up to 94% for key intermediates and resulting in the formation of a library of approximately 30 compounds.
View Article and Find Full Text PDFOrg Lett
December 2024
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China.
Copper-catalyzed cycloaddition/coupling cascades utilizing azomethine imines and alkynes have been developed for the divergent synthesis of ()-alkenyl and alkynyl ,-bicyclic pyrazolidinones by varying the reaction conditions. The choice of inert or oxidative atmosphere plays a crucial role in determining the transformation pathways. These reactions have broad substrate scopes and mild conditions, making them potentially useful.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Applied Chemistry, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
In this study, 5-(2-bromoaryl)tetrazoles were reacted with 1,3-diketones in DMF in the presence of a catalytic amount of magnetic Cu-MOF-74 (FeO@SiO@Cu-MOF-74) and a base under microwave irradiation to yield the corresponding 1-aminoisoquinolines. The FeO@SiO@Cu-MOF-74 catalyst could be easily recovered from the reaction mixture and reused four times without any significant loss of catalytic activity. An initial copper-catalyzed C(sp)-C(sp) bond formation accompanied by -Claisen deacylative cyclocondensation (for acyclic 1,3-diketones) and direct cyclocondensation (for cyclohexane-1,3-diones) is proposed as a key reaction pathway for this process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!