Intercellular Instructed-Assembly Mimics Protein Dynamics To Induce Cell Spheroids.

J Am Chem Soc

Department of Chemistry , Brandeis University, 415 South Street , Waltham , Massachusetts 02454 , United States.

Published: May 2019

Cell-mediated remodeling of extracellular matrix (ECM) plays important roles for cell functions, but it is challenging to develop synthetic materials for mimicking such a dynamic aspect of proteins in ECM. Here we show that intercellular morphological transition of peptide assemblies mimic the unfolding of fibronectin, thus enabling formation of spheroids from a monolayer of cells. Specifically, the phosphopeptide self-assembles to form nanoparticles, which turns into nanofibers upon partial dephosphorylation catalyzed by enzymes (e.g., phosphatases) at intercellular space. Occurring between HS-5 cells, such an enzyme-instructed self-assembly enables a sheet of the HS-5 cells to form cell spheroids. Structure-activity investigation reveals that proteolytic stability, dephosphorylation, and biotin conjugation of the peptides are indispensable for forming the cell spheroids. Further mechanism study indicates that the intercellular assemblies interact with multiple ECM components (e.g., laminin, collagens III and IV) to drive the formation of the cell spheroids. As the first example of intercellular instructed-assembly from homotypic precursors, this work illustrates a new approach that uses cell-responsive peptide assemblies to mimic protein dynamics for control cell behaviors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542364PMC
http://dx.doi.org/10.1021/jacs.9b03346DOI Listing

Publication Analysis

Top Keywords

cell spheroids
16
intercellular instructed-assembly
8
protein dynamics
8
peptide assemblies
8
assemblies mimic
8
hs-5 cells
8
cell
6
intercellular
5
spheroids
5
instructed-assembly mimics
4

Similar Publications

This study investigated the anti-cancer effects of the chemically characterized Tilia species (linden) on MIA PaCa-2 cells by analyzing various cancer-triggering mechanisms, including oxidative stress and inflammation status. Extracts from the flowers, bracts, and inflorescences of T. cordata, T.

View Article and Find Full Text PDF

One of the main drivers of fibrotic diseases is epithelial-mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-β1 (TGF-β1) has been previously shown to regulate EMT. TGF-β1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis.

View Article and Find Full Text PDF

Mechanobiology of 3D cell confinement and extracellular crowding.

Biophys Rev

December 2024

Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.

Cells and tissues are often under some level of confinement, imposed by the microenvironment and neighboring cells, meaning that there are limitations to cell size, volume changes, and fluid exchanges. 3D cell culture, increasingly used for both single cells and organoids, inherently impose levels of confinement absent in 2D systems. It is thus key to understand how different levels of confinement influences cell survival, cell function, and cell fate.

View Article and Find Full Text PDF

Aims/introduction: Metformin treatment for hyperglycemia in pregnancy (HIP) beneficially improves maternal glucose metabolism and reduces perinatal complications. However, metformin could impede pancreatic β cell development via impaired mitochondrial function. A new anti-diabetes drug imeglimin, developed based on metformin, improves mitochondrial function.

View Article and Find Full Text PDF

Cisplatin-eugenol Pt(IV) prodrugs target colon cancer stem cells: A novel strategy for enhanced anticancer efficacy.

Biomed Pharmacother

January 2025

Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic; Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic. Electronic address:

Platinum(IV) compounds possess distinct properties that set them apart from platinum(II) compounds. Often designed as prodrugs, they are reduced within cancer cells to their active platinum(II) form, enabling their cytotoxic effects. Their versatility also lies in their ability to be functionalized and conjugated with bioactive molecules to enhance cancer cell targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!