Heparanase is an endo-β-d-glucuronidase that cleaves heparan sulfate (HS) side chains of heparan sulfate proteoglycans. Compelling evidence tie heparanase levels with all steps of tumor formation including tumor initiation, growth, metastasis and chemo-resistance, likely involving augmentation of signaling pathways and gene transcription. In order to reveal the molecular mechanism(s) underlying the protumorigenic properties of heparanase, we established an inducible (Tet-on) system in U87 human glioma cells and applied gene array methodology in order to identify genes associated with heparanase induction. We found that CD24, a mucin-like cell adhesion protein, is consistently upregulated by heparanase and by heparanase splice variant devoid of enzymatic activity, whereas heparanase gene silencing was associated with decreased CD24 expression. This finding was further substantiated by a similar pattern of heparanase and CD24 immunostaining in glioma patients (Pearson's correlation; R = 0.66, p = 0.00001). Noteworthy, overexpression of CD24 stimulated glioma cell migration, invasion, colony formation in soft agar and tumor growth in mice suggesting that CD24 functions promote tumor growth. Likewise, anti-CD24 neutralizing monoclonal antibody attenuated glioma tumor growth, and a similar inhibition was observed in mice treated with a neutralizing mAb directed against L1 cell adhesion molecule (L1CAM), a ligand for CD24. Importantly, significant shorter patient survival was found in heparanase-high/CD24-high tumors vs. heparanase-high/CD24-low tumors for both high-grade and low-grade glioma (p = 0.02). Our results thus uncover a novel heparanase-CD24-L1CAM axis that plays a significant role in glioma tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.32375 | DOI Listing |
Combining radiotherapy with targeted therapy benefits patients with advanced epidermal growth factor receptor-mutated non-small cell lung cancer (EGFRm NSCLC). However, the optimal strategy to combine EGFR tyrosine kinase inhibitors (TKIs) with radiotherapy for maximum efficacy and minimal toxicity is still uncertain. Notably, EVs, which serve as communication mediators among tumor cells, play a crucial role in the anti-tumor immune response.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Beijing Institute of Biological Products Company Limited, Beijing 100176, China.
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a notably poor response to therapy due to its immunosuppressive tumor microenvironment (TME) and intrinsic drug resistance. The oncolytic virus (OV) represents a promising therapeutic strategy capable of transforming the "cold" immunological profile of PDAC tumors to a "hot" one by reshaping the TME. 4-1BB (CD137), a crucial member of the tumor necrosis factor receptor superfamily, plays a significant role in T-cell activation and function.
View Article and Find Full Text PDFPharmaceutics
December 2024
New Drug Screening and Pharmacodynamics Evaluation Center, National Key Laboratory for Multi-Target Natural Drugs, China Pharmaceutical University, Nanjing 210009, China.
: Gastric cancer (GC) is the leading cause of cancer-related deaths worldwide. C118P, a microtubule inhibitor with anti-angiogenic and vascular-disrupting activities, was proven to be cytotoxic to various cancer cell lines. This study aimed to explore the anti-tumor effect of C118P against gastric cancer and identify its potential target.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 40700, Israel.
Here, we report on the synthesis and biological evaluation of a novel peptide-drug conjugate, P6-SN38, which consists of the EGFR-specific short cyclic peptide, P6, and the Topo I inhibitor SN38, which is a bioactive metabolite of the anticancer drug irinotecan. SN38 is attached to the peptide at position 20 of the E ring's tertiary hydroxyl group via a mono-succinate linker. The developed peptide-drug conjugate (PDC) exhibited sub-micromolar anticancer activity on EGFR-positive (EGFR+) cell lines but no effect on EGFR-negative (EGFR-) cells.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China.
Background/objectives: Colorectal cancer (CRC) is characterized by a high rate of both incidence and mortality, and its treatment outcomes are often affected by recurrence and drug resistance. Ferroptosis, an iron-dependent programmed cell death mechanism triggered by lipid peroxidation, has recently gained attention as a potential therapeutic target. Graphene oxide (GO), known for its oxygen-containing functional groups, biocompatibility, and potential for functionalization, holds promise in cancer treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!