A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoparticle-Encapsulated Doxorubicin Demonstrates Superior Tumor Cell Kill in Triple Negative Breast Cancer Subtypes Intrinsically Resistant to Doxorubicin. | LitMetric

The effect of size and release kinetics of doxorubicin-nanoparticles on anti-tumor efficacy was evaluated in a panel of human cancer cell lines, including triple-negative breast cancer (TNBC) cells that frequently demonstrate resistance to doxorubicin. Different nano-formulations of sol-gel-based Doxorubicin containing nanoparticles were synthesized. Increased cell kill in chemoreffactory triple-negative breast cancer cells was associated with the smallest size of nanoparticles and the slowest release of Dox. Modeling of dose-response parameters in Dox-sensitive versus Dox-resistant lines demonstrated increased E and area under the curve in Dox-resistant mesenchymal TNBC cells, implying potentially favorable activity in this molecular subtype of breast cancer. Mesenchymal TNBC cells demonstrated a high rate of fluorescent bead uptake suggestive of increased endocytosis, which may partially account for the enhanced efficacy of Dox-np in this subtype. Thus, manipulation of size and release kinetics of this nanoparticle platform is associated with enhanced dose-response metrics and tumor cell kill in therapeutically recalcitrant TNBC cell models. This platform is easily customizable and warrants further exploration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6483385PMC
http://dx.doi.org/10.33218/prnano1(3).181029.1DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
cell kill
12
tnbc cells
12
tumor cell
8
size release
8
release kinetics
8
triple-negative breast
8
mesenchymal tnbc
8
cell
5
cancer
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!