This research evaluated the effects of subpressure on the shear bond strength (SBS) of 80 specimens with flat enamel surfaces and on AgNO microleakage of 40 specimens with flat enamel surfaces and 40 specimens with 1 mm deep cavities before and after thermocycling. The enamel of 168 specimens was grounded to a flat surface. Two types of sealants (E and H) were selected. Sealants were applied to enamel surface (88 specimens, group F) either subjected or not to subpressure. The bonding interfaces were observed using scanning electron microscopy (SEM) and the SBS was examined using a universal testing machine before and after thermocycling. The failure mode was also analyzed. For the microleakage test, 80 specimens were grouped as group A (original enamel flat surface) and group B (a round cavity of 1 mm in depth) (40 per group). Sealants were applied to the teeth either subjected or not to subpressure. The specimens were submitted to a microleakage protocol with AgNO and analyzed before and after thermocycling. Statistical analysis was performed for the data. The results showed that subpressure eliminated voids on the interface between the enamel and sealants and significantly enhanced specimens' SBS. Although thermocycling reduced SBS significantly, specimens under subpressure after thermocycling still showed higher SBS than specimens under nonsubpressure before thermocycling. The subpressure groups showed a lower microleakage level compared to nonsubpressure groups, though thermocycling caused deeper silver infiltration. In addition, different sealants showed no significant effect on the SBS and microleakage performance. Overall, subpressure application improves sealant bonding and retention rate and has potential to prevent secondary caries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458865PMC
http://dx.doi.org/10.1155/2019/5070383DOI Listing

Publication Analysis

Top Keywords

sbs specimens
12
specimens
9
sealant bonding
8
subpressure
8
specimens flat
8
flat enamel
8
enamel surfaces
8
flat surface
8
sealants applied
8
subjected subpressure
8

Similar Publications

Purpose: This study investigated the bond strength between short fiber-reinforced resin composite (SFC) and dentin following air abrasion with various types of abrasive particles.

Methods: A total of 120 human molars were prepared for a shear bond strength (SBS) test of the resin composite. The teeth were divided into 12 groups (n = 10/group) based on the air abrasion particle used.

View Article and Find Full Text PDF

Statement Of Problem: Comprehensive data are needed on the performance of chemically activated, chairside hard reline materials when used with computer-aided design and computer-aided manufacturing (CAD-CAM) milled polymethyl methacrylate (PMMA) denture bases and conventionally processed bases. This lack of data affects decisions regarding the chairside reline material to be used for improving the fit and retention of relined complete dentures.

Purpose: The purpose of this in vitro study was to evaluate and compare the shear bond strength (SBS) of 3 chemically activated, chairside hard reline materials on CAD-CAM milled and conventional heat-polymerized PMMA denture bases.

View Article and Find Full Text PDF

Objectives: To evaluate the shear bond strength (SBS) of universal cements (UCs) to dentin prepared with different diamond burs using various adhesive strategies.

Materials And Methods: One-hundred-twenty molars were prepared to expose the mid-coronal dentin. The teeth were divided into two groups according to diamond bur preparations: coarse and super-fine grit burs.

View Article and Find Full Text PDF

Objectives:  Orthodontic bracket bond failure is an obstacle in clinical orthodontics. This study investigated the influence of pH cycling on the shear bond strength (SBS), adhesive remnant index (ARI), and survival probability of adhesive-precoated flash-free ceramic brackets.

Materials And Methods:  Forty mandibular premolars were randomly divided into two groups ( = 20): C: noncoated orthodontic brackets, and F: flash-free adhesive-precoated orthodontic brackets.

View Article and Find Full Text PDF

Evaluation of the Effect of Applying Chitosan, Neem, Tulsi, Aloe vera, and Chlorhexidine Solutions on the Shear Bond Strength of Composite to Dentin.

J Dent (Shiraz)

December 2024

Postgraduate Student, Dept. of Operative Dentistry, Biomaterials Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.

Statement Of The Problem: Dentin adhesion is challenging and needs modifications. Newly introduced nature-derived materials may be a useful solution in improving dentin adhesion. The use of natural antimicrobial agents for pretreating prepared dentin surfaces before restoration has become of interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!