Marine-terminating glaciers control most of Greenland's ice discharge into the ocean, but little is known about the geometry of their frontal regions. Here we use side-looking, multibeam echo sounding observations to reveal that their frontal ice cliffs are grounded deeper below sea level than previously measured and their ice faces are neither vertical nor smooth but often undercut by the ocean and rough. Deep glacier grounding enables contact with subsurface, warm, salty Atlantic waters (AW) which melts ice at rates of meters per day. We detect cavities undercutting the base of the calving faces at the sites of subglacial water (SGW) discharge predicted by a hydrological model. The observed pattern of undercutting is consistent with numerical simulations of ice melt in which buoyant plumes of SGW transport warm AW to the ice faces. Glacier undercutting likely enhances iceberg calving, impacting ice front stability and, in turn, the glacier mass balance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473555 | PMC |
http://dx.doi.org/10.1002/2015GL064236 | DOI Listing |
Nat Commun
January 2025
Chair of Data Science in Earth Observation, Department of Aerospace and Geodesy, Technical University of Munich, Munich, Germany.
A major uncertainty in predicting the behaviour of marine-terminating glaciers is ice dynamics driven by non-linear calving front retreat, which is poorly understood and modelled. Using 124919 calving front positions for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, generated with deep learning, we identify pervasive calving front retreats for non-surging glaciers over the past 38 years. We observe widespread seasonal cycles in calving front position for over half of the glaciers.
View Article and Find Full Text PDFThis case study of Kongsfjorden, western coastal Svalbard, provides insights on how freshwater runoff from marine- and land-terminating glaciers influences the biogeochemical cycles and distribution patterns of carbon, nutrients, and trace elements in an Arctic fjord system. We collected samples from the water column at stations along the fjord axis and proglacial river catchments, and analyzed concentrations of dissolved trace elements, together with dissolved nutrients, as well as alkalinity and dissolved inorganic carbon. Statistical tools were applied to identify and quantify biogeochemical processes within the fjord that govern the constituent distributions.
View Article and Find Full Text PDFAn Acad Bras Cienc
December 2024
Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Centro Polar e Climático, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
Glaciers are sensitive to environmental climatic conditions and show their variability over time. This study investigates the environmental characteristics and variation in glacial cover of the Greenwich, Livingston, Robert and Snow islands, Antarctica, between 1956 and 2023. The glacier extension mapping was based on visual interpretation of the Landsat 4, 7 and 8 optical images and normalised difference indexes combination.
View Article and Find Full Text PDFNat Commun
December 2024
Norwegian Polar Institute, Tromsø, Norway.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!