BACKGROUND Estrogen levels regulate changes in osteoarthritis (OA) by inhibiting degradation of the extracellular matrix. Recent in vitro studies have also shown the role of microRNA-140-5p (miR-140-5p). This study aimed to investigate the role of estrogen deficiency, selective modulation of expression of the estrogen receptor (ER), and expression of miR-140-5p in cartilage and subchondral bone remodeling in an ovariectomized rat model of postmenopausal OA. MATERIAL AND METHODS Female Sprague-Dawley rats included two model groups, ovariectomized (OVX) rats and rats with destabilization of the medial meniscus (DMM) rats. Two months after surgery, estrogen levels were measured by the enzyme-linked immunosorbent assay (ELISA). Three-dimensional (3D) micro-computed tomography (micro-CT) was used to image the knee joints. Rats were treated with subcutaneous injection of estrogen (E2) or the selective estrogen receptor modulator (SERM), raloxifene (RAL), for one month. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect miR-140-5p in serum, and histology of the knee joint cartilage and bone was performed. RESULTS In the ovariectomized rat model of OA, estrogen therapy reduced the degree of cartilaginous degeneration, while treatment with raloxifene showed no significant effect. Expression levels of miR-140-5p in the OA model group were significantly lower than the control group. Micro-CT showed that in the model group, anterior cruciate ligament dislocation and subchondral bone density were significantly reduced. CONCLUSIONS In an ovariectomized rat model of postmenopausal OA, estrogen deficiency resulted in resorption of subchondral bone and degeneration of articular cartilage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503753 | PMC |
http://dx.doi.org/10.12659/MSM.916254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!