A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

To Generate an Ensemble Model for Women Thyroid Prediction Using Data Mining Techniques. | LitMetric

Objective: The main objective of this paper is to easily identify thyroid symptom for treatment. Methods: In this paper two main techniques are proposed for mining the hidden pattern in the dataset. Ensemble-I and Ensemble- II both are machine learning techniques. Ensemble-I generated from decision tree, over fitting and neural network and Ensemble-II generated from combinations of Bagging and Boosting techniques. Finally proposed experiment is conducted by Ensemble-I vs. Ensemble-II. Results: In the entire experimental setup find an ensemble –II generated model is the higher compare to other ensemble-I model. In each experiment observe and compare the value of all the performance of ROC, MAE, RMSE, RAE and RRSE. Stacking (ensemble-I) ensemble model estimate the weights for input with output model by thyroid dataset. After the measurement find out the results ROC=(98.80), MAE= (0.89), 6RMSE=(0.21), RAE= (52.78), RRSE=(83.71)and in the ensemble-II observe thyroid dataset and measure all performance of the model ROC=(98.79), MAE= (0.31), RMSE=(0.05) and RAE= (35.89) and RRSE=(52.67). Finally concluded that (Bagging+ Boosting) ensemble-II model is the best compare to other.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948879PMC
http://dx.doi.org/10.31557/APJCP.2019.20.4.1275DOI Listing

Publication Analysis

Top Keywords

ensemble model
8
thyroid dataset
8
model
7
ensemble-i
5
generate ensemble
4
model women
4
thyroid
4
women thyroid
4
thyroid prediction
4
prediction data
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!