Purpose: Chemotherapy-induced alopecia (CIA) is a common and often stressful adverse effect associated with chemotherapy. CIA can cause more psychosocial pressure in patients, including effects on sexuality, self-esteem, and social relationships. We analyzed publicly available data to identify drugs formulated for topical use targeting the relevant CIA molecular pathways by using computational tools.

Methods: The genes associated with CIA were determined by text mining, and the gene ontology of the gene set was studied using the Functional Enrichment analysis tool. Protein-protein interaction network analysis was performed using the String database. Enriched gene sets belonging to the identified pathways were queried against the Drug-Gene Interaction database to find drug candidates for topical use in CIA.

Findings: Our analysis identified 427 genes common to CIA text-mining concepts. Gene enrichment analysis and protein-protein interaction analysis yielded 19 genes potentially targetable by a total of 29 drugs that could possibly be formulated for topical application.

Implications: The findings from the present analysis would give a new thought to help discover more effective agents, and present tremendous opportunities to study novel target pharmacology and facilitate drug repositioning efforts in the pharmaceutical industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinthera.2019.04.003DOI Listing

Publication Analysis

Top Keywords

chemotherapy-induced alopecia
8
text mining
8
drugs formulated
8
formulated topical
8
enrichment analysis
8
protein-protein interaction
8
analysis
6
cia
5
computational drug
4
drug discovery
4

Similar Publications

Response to Kearney et al.'s "Response to Kang et al.'s 'Efficacy of low-dose oral minoxidil in the management of anticancer therapy-induced alopecia in patients with breast cancer: A retrospective cohort study'".

J Am Acad Dermatol

December 2024

Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea. Electronic address:

View Article and Find Full Text PDF

Chemotherapy-induced alopecia (CIA) represents one of the most common side effects of cancer treatment. Currently, scalp cooling systems are utilized to treat CIA, but their safety and effectiveness remain limited. The objective of this study was to investigate the effect of fucoidan on CIA and to elucidate the possible mechanism of fucoidan in treating CIA.

View Article and Find Full Text PDF

Purpose: Scalp cooling therapy (SCT) improves chemotherapy-induced alopecia (CIA), but there are few published data about its efficacy in an Asian-predominant population. We report our tertiary institution experience of SCT in patients with breast or gynaecological cancers undergoing chemotherapy.

Methods: The Paxman scalp cooling system was employed for eligible women with breast or gynaecological cancers receiving anthracycline or taxane-based chemotherapy.

View Article and Find Full Text PDF
Article Synopsis
  • Chemotherapy-induced alopecia can negatively affect patients' mental health, and this study explores using Phenylephrine, a topical vasoconstrictor, to potentially reduce hair loss during chemotherapy.
  • The research focused on improving the skin permeation and sustained release of Phenylephrine using different lipid vesicles (ethosomes, invasomes, transfersomes) incorporated into hydrogels.
  • Findings revealed that ethosomal and invasomal gels significantly improved drug delivery efficiency when compared to traditional gels, indicating their potential effectiveness in targeting local vasculature for sustained vasoconstriction.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!