Objectives: Renal cell carcinoma (RCC) is the most lethal urologic malignancy with increasing incidence worldwide. The conventional treatment strategies for advanced or recurrent RCC are not efficient and show considerable toxicities. Adoptive cell transfer (ACT) has become a promising treatment option for multiple cancers, particularly in combination with other therapeutic approaches. ACT often utilizes extensively in vitro expanded tumor-infiltrating lymphocytes (TILs). However, TILs are a very heterogeneous mix of cell populations and only those populations that have a cytotoxic and migratory potential are thought to deliver a therapeutic impact in ACT. The identification and localization of these therapeutically potent populations are therefore needed.

Methods And Materials: A total number of 57 tissue samples from 19 RCC patients who underwent radical nephrectomy was analyzed. The tissue samples were obtained from the tumor, peritumoral tissue, and the adjacent healthy renal tissue. The tissues were sliced, enzymatically dissociated into single cell suspensions and the obtained cells further analyzed by flow cytometry for the expression of markers of lymphocyte cytotoxicity - TRAIL and FasL, and a surrogate marker of lymphocyte migratory activity - PECAM-1. The analyzed data were next correlated with the clinical and histopathological data.

Results: Non-clear cell RCC (non-ccRCC) tumors showed a significantly decreased tumor infiltration with TRAILFasL NK cells but elevated infiltration with FasLPECAM-1 T cells as compared with clear cell RCC (ccRCC) tumors. Further analyses revealed that the peritumoral tissue of ccRCC patients is a reservoir of TRAILFasL, TRAILPECAM-1, or FasLPECAM-1 NK and T cells.

Conclusions: The cytotoxic/migratory lymphocytes were identified in tumors of ccRCC patients. These lymphocytes became excluded from the tumor and accumulated in the patient's peritumoral tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.urolonc.2019.03.014DOI Listing

Publication Analysis

Top Keywords

peritumoral tissue
16
clear cell
8
tissue samples
8
cell rcc
8
ccrcc patients
8
tissue
7
cell
7
rcc
5
cells
4
cells cytotoxic/migratory
4

Similar Publications

Obesity exacerbates the risk and aggressiveness of many types of cancer. Adipose tissue (AT) represents a prevalent component of the tumor microenvironment (TME) and contributes to cancer development and progression. Reciprocal communication between cancer and adipose cells leads to the generation of cancer-associated adipocytes (CAAs), which in turn foster tumor invasiveness by producing paracrine metabolites, adipocytokines, and growth factors.

View Article and Find Full Text PDF

Glioblastoma (GB) is one of the most aggressive and treatment-resistant cancers due to its complex tumor microenvironment (TME). We previously showed that GB progression is dependent on the aberrant induction of chaperone-mediated autophagy (CMA) in pericytes (PCs), which promotes TME immunosuppression through the PC secretome. The secretion of extracellular matrix (ECM) proteins with anti-tumor (Lumican) and pro-tumoral (Osteopontin, OPN) properties was shown to be dependent on the regulation of GB-induced CMA in PCs.

View Article and Find Full Text PDF

Objective: Vulvar squamous cell carcinoma (VSCC) can be either HPV-dependent (HPVd) or HPV-independent (HPVi). HPVd VSCC typically occurs in younger women, has a more favorable prognosis, and develops from high-grade squamous intraepithelial lesions (HSIL). HPVi VSCC predominantly affects older women and arises within areas of chronic inflammation, particularly lichen sclerosis (LS).

View Article and Find Full Text PDF

Objective: To evaluate the clinical efficacy of ultrafast dynamic contrast-enhanced (DCE)-MRI using a compressed sensing (CS) technique for differentiating benign and malignant soft-tissue tumors (STTs) and to evaluate the factors related to the grading of malignant STTs.

Materials And Methods: A total of 165 patients (96 male; mean age, 61 years), comprising 111 with malignant STTs and 54 with benign STTs according to the 2020 WHO classification, underwent DCE-MRI with CS between June 2018 and June 2023. The clinical, qualitative, and quantitative parameters associated with conventional MRI were also obtained.

View Article and Find Full Text PDF

Biopsy location and tumor-associated macrophages in predicting malignant glioma recurrence using an in-silico model.

NPJ Syst Biol Appl

January 2025

Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.

Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!