There is clear evidence that discarded single-use carrier bags are accumulating in the environment. As a result, various plastic formulations have been developed which state they deteriorate faster and/or have fewer impacts on the environment because their persistence is shorter. This study examined biodegradable, oxo-biodegradable, compostable, and high-density polyethylene (i.e., a conventional plastic carrier bag) materials over a 3 year period. These materials were exposed in three natural environments; open-air, buried in soil, and submersed in seawater, as well as in controlled laboratory conditions. In the marine environment, the compostable bag completely disappeared within 3 months. However, the same compostable bag type was still present in the soil environment after 27 months but could no longer hold weight without tearing. After 9 months exposure in the open-air, all bag materials had disintegrated into fragments. Collectively, our results showed that none of the bags could be relied upon to show any substantial deterioration over a 3 year period in all of the environments. It is therefore not clear that the oxo-biodegradable or biodegradable formulations provide sufficiently advanced rates of deterioration to be advantageous in the context of reducing marine litter, compared to conventional bags.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b06984 | DOI Listing |
Insects
August 2024
Laboratorio de Control Biológico, Grupo de Biología de Plantas y Sistemas Productivos, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra/# 43-82, Bogotá D.C. 110231, Colombia.
The accumulation and unsustainable management of plastic waste generate environmental pollution that affects ecosystems, wildlife, and human health. We studied the possibility of using the consumption and digestion of oxo-biodegradable, compostable plastics and polypropylene from face masks by the fifth-instar larvae of as a strategy for the sustainable management of plastic waste. We used Fourier transform infrared spectrophotometry (FTIR) to determine the percentage of consumption and presence of microplastics in the digestive tract and excreta for 10 treatments evaluated for 135 h.
View Article and Find Full Text PDFFront Plant Sci
September 2024
State Key Laboratory of Aridland Crop Science, College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, China.
Agricultural plastic film, as an important agricultural production material in the China Hexi Corridor oasis agricultural area, is widely used in the intensive production process of purple garlic, which plays an important role in increasing yield, improving quality, ensuring supply, etc. However, the difference in decomposition characteristics between ordinary plastic film and degradable plastic film may affect soil moisture and temperature, thereby affecting soil biochemical properties. Therefore, we conducted a study to solve this problem.
View Article and Find Full Text PDFSci Total Environ
August 2024
Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong; The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong. Electronic address:
Bioplastics are increasingly used as a solution to tackle plastic pollution problems. However, their degradability in natural environments is currently under debate. To evaluate their degradation efficiencies, we conducted in-situ degradation experiments in an open-air and two marine environments in Hong Kong.
View Article and Find Full Text PDFR Soc Open Sci
May 2023
UCL Plastic Waste Innovation Hub, University College London, London, UK.
Pro-oxidant additive containing (PAC) plastics is a term that describes a growing number of plastics which are designed to degrade in the unmanaged natural environment (open-air, soil, aquatic) through oxidation and other processes. It is a category that includes 'oxo-degradable' plastics, 'oxo-biodegradable' plastics and those containing 'biotransformation' additives. There is evidence that a new standard PAS 9017 : 2020 is relevant to predicting the timescale for abiotic degradation of PAC plastic in hot dry climates under ideal conditions (data reviewed for South of France and Florida).
View Article and Find Full Text PDFBMC Microbiol
December 2022
Biotechnology Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Jalan Raya Cisauk - Lapan no. 10, Tangerang, Indonesia.
Background: Plastic waste accumulation is one of the main ecological concerns in the past decades. A new generation of plastics that are easier to degrade in the environment compared to conventional plastics, such as starch-based bioplastics and oxo-biodegradable plastics, is perceived as a solution to this issue. However, the fate of these materials in the environment are unclear, and less is known about how their presence affect the microorganisms that may play a role in their biodegradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!