Cellular maintenance and development are two fundamental mechanisms regulated by the canonical Wnt signaling pathway. Wnt/beta-catenin signaling pathway controls a myriad of cellular processes that are essential for normal cell functioning. Cell cycle progression, differentiation, fate determination, and migration are generally orchestrated by canonical Wnt signaling. Altered Wnt/beta-catenin signaling has been considered a promoting event for different types of cancers and the oncogenic potential of Wnt signaling have been discussed in many cancer types, including breast, colon, pancreatic as well as head and neck. Furthermore, Wnt signaling is critical for the maintenance and stemness of both the normal as well as cancer stem cells. This review sheds new light on Wnt signaling and explains how it can regulate normal physiological processes and curtail the development of cancer. It depicts the vital functions of Wnt signaling in the stem cell growth and differentiation by focusing on current druggable targets that have been ascribed by recent studies. Thus, Wnt signaling pathway retains a tremendous potential in eradicating head and neck squamous cell carcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948882PMC
http://dx.doi.org/10.31557/APJCP.2019.20.4.995DOI Listing

Publication Analysis

Top Keywords

wnt signaling
32
head neck
12
signaling pathway
12
signaling
9
wnt
8
neck squamous
8
squamous cell
8
cell carcinoma
8
canonical wnt
8
wnt/beta-catenin signaling
8

Similar Publications

Gestational diabetes mellitus (GDM), defined as glucose intolerance occurring or first detected during pregnancy, affects approximately 8% of pregnancies worldwide. The dysfunction of trophoblasts in pregnancies complicated by GDM is associated with changes in trophoblast cell functions, resulting in compromised proliferation and regulation of the cell cycle. Cyclin B1 (CCNB1), a pivotal controller of the start of mitosis, is crucial in these mechanisms.

View Article and Find Full Text PDF

LGR5: An emerging therapeutic target for cancer metastasis and chemotherapy resistance.

Cancer Metastasis Rev

January 2025

Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, 5005, Australia.

Cancer stem cells play an important role in tumor progression and chemotherapy resistance. Leucine-rich G repeat-containing protein-coupled receptor 5 (LGR5) has been identified as a cancer stem cell marker in several cancer types. LGR5 is involved in cancer development and progression via several pathways including WNT/β-catenin signaling pathway.

View Article and Find Full Text PDF

Prostate cancer (PC) ranks among the most prevalent cancers in males. Recent studies have highlighted intricate connections between long non-coding RNAs (lncRNAs), natural products, and cellular signaling in PC development. LncRNAs, which are RNA transcripts without protein-coding function, influence cell growth, programmed cell death, metastasis, and resistance to treatments through pathways like PI3K/AKT, WNT/β-catenin, and androgen receptor signaling.

View Article and Find Full Text PDF

Competitive signaling and cellular communications in myocardial infarction response.

Mol Biol Rep

January 2025

Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.

Cell communication and competition pathways are malleable to Myocardial Infarction (MI). Key signals, transcriptive regulators, and metabolites associated with apoptotic responses such as Myc, mTOR, and p53 are important players in the myocardium. The individual state of cardiomyocytes, fibroblasts, and macrophages in the heart tissue are adaptable in times of stress.

View Article and Find Full Text PDF

Glucocorticoid excess causes bone loss due to decreased bone formation and increased bone resorption; miR-433-3p is a miRNA that negatively regulates bone formation in male mice by targeting Runx2 as well as RNAs involved in Wnt, protein kinase A and endogenous glucocorticoid signaling. To examine the impact of miR-433-3p on glucocorticoid-mediated bone loss, transgenic mice expressing a miR-433-3p tough decoy inhibitor in the osteoblast lineage were administered prednisolone via slow-release pellets. Bone loss was greater in control mice treated with prednisolone compared with miR-433-3p tough decoy mice due to higher osteoclast activity in the controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!