Benzene, toluene, ethylbenzene, and xylenes are volatile hydrocarbons known as BTEX, which present concerns about environmental problems. Density functional theory (DFT) functionals were used for the BTEX gas phase adsorption on TiO (110) of rutile and (101) of anatase surfaces. Dispersion terms have shown the importance to treat weak interactions and were used to study these adsorptions using plane wave DFT calculations. All BTEX molecules have the same trend for the adsorption on rutile and anatase surfaces. The inclusion of dispersion terms has a significant contribution for the interaction energy. Density of states results suggest the hybridization between the d state of pentacoordinated titanium atoms (Ti) and carbon p states of benzene. The adsorption energy values indicate an effective interaction between the BTEX and surfaces, mainly due to the aromatic π interaction, which is present in all adsorbates. However, for p-xylene the methyl hydrogen directs the second major influence. Graphical abstract Charge difference showing the system with the smallest interaction and the one with the largest interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-019-4027-2DOI Listing

Publication Analysis

Top Keywords

adsorption tio
8
dft functionals
8
anatase surfaces
8
dispersion terms
8
btex
5
interaction
5
btex adsorption
4
tio anatase
4
anatase rutile
4
surfaces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!