Understanding the development of microstructure (e.g., structures with length scales roughly 0.5-500 μm) in hydrogels is crucial for their use in several biomedical applications. We utilize ultra-small-angle neutron scattering (USANS) and confocal microscopy to explore microstructure of poly(lactide)-poly(ethylene oxide)-poly(lactide) (PLA-PEO-PLA) triblock copolymer hydrogels with varying l/d-lactide ratio. We have previously found that these polymers self-assemble on the nanoscale into micelles. Here, we observe large-scale structures with diverse morphologies, including highly porous self-similar networks with characteristic sizes spanning approximately 120 nm-200 μm. These structural features give rise to power-law scattering indicative of fractal structures in USANS. Mass fractal and surface fractal structures are found for gels with l/d ratios of 80/20 and 50/50, respectively. Confocal microscopy shows microscale water-filled channels and pores that are more clearly evident in gels with a higher fraction of l-lactide in the PLA block as compared to the 50/50 hydrogels. Tuning block stereochemistry may provide a means of controlling the self-assembly and structural evolution at both the nanoscale and microscale, impacting application of these materials in tissue engineering and drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2019.04.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!