Optimization of screening-level risk assessment and priority selection of emerging pollutants - The case of pharmaceuticals in European surface waters.

Environ Int

Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Chongqing 400044, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China. Electronic address:

Published: July 2019

Pharmaceuticals in surface waters have raised significant concern in recent years for their potential environmental effects. This study identified that at present a total of 477 substances (including 66 metabolites and transformation products) have been analyzed in European surface waters. Around 60% (284) of these compounds belonging to 16 different therapeutic groups were positively detected in one or more of 33 European countries. To conveniently and effectively prioritize potential high-risk compounds, an optimized method that considers the frequency of concentrations above predicted no effects levels was developed on the basis of the traditional method, and it was then used to identify and screen candidate priority pollutants in European surface waters. The results proved the feasibility and advantages of the optimized method. Pharmaceuticals detected in European surface waters were classified into 5 categories (high, moderate, endurable, negligible and safe) depending on their potential environmental effects and the distribution of pharmaceuticals. Circa 9% (45 out of 477) analyzed compounds showed a potential environmental risk to aquatic ecosystems. Among these 45 compounds, 12 compounds were indicated to have high environmental risk in aquatic environments, while 17 and 7 compounds showed moderate and small-scale environmental risks, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2019.04.034DOI Listing

Publication Analysis

Top Keywords

surface waters
20
european surface
16
potential environmental
12
environmental effects
8
detected european
8
optimized method
8
environmental risk
8
risk aquatic
8
compounds
6
european
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!