A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A fully bio-based composite coating with mechanical robustness and dual superlyophobicity for efficient two-way oil/water separation. | LitMetric

A fully bio-based composite coating with mechanical robustness and dual superlyophobicity for efficient two-way oil/water separation.

J Colloid Interface Sci

The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China. Electronic address:

Published: August 2019

Recently, two-way oil/water separation materials bearing both "water-removing" and "oil-removing" functions are of great interest for treating environmental water pollution. Despite having switchable surface wettability, these materials are generally designed to possess superhydrophilicity in air, which, standing on the viewpoint of thermodynamics, is unstable and easy to lose the superwetting property. Concerning the full exploitation of sustainable biomass resources, herein, we use soy protein and ramie fiber to fabricate a cross-linked biocomposite whose amphiphilicity can be tuned by introducing a low surface-energy agent, octadecylamine. The resultant composite can be used as a coating for stainless steel meshes, preparing stably hydrophobic surface in air as well as achieving dual superlyophobicity under liquid that is required for efficiently separating light and heavy oils from water. Furthermore, a high separation efficiency is acquired for both light oil/water and heavy oil/water mixtures during cyclicusage. Notably, the fully bio-based coating displays high resistance against mechanical abrasion and harsh chemical corrosions (acid, alkaline, and salt) without losing high separation efficiency, indicating the potential application of such material in oily wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2019.04.055DOI Listing

Publication Analysis

Top Keywords

fully bio-based
8
composite coating
8
dual superlyophobicity
8
two-way oil/water
8
oil/water separation
8
high separation
8
separation efficiency
8
bio-based composite
4
coating mechanical
4
mechanical robustness
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!