RNA polymerase can cleave a phosphodiester bond at the 3' end of a nascent RNA in the presence of pyrophosphate producing NTP. Pyrophosphorolysis has been characterized during elongation steps of transcription where its rate is significantly slower than the forward rate of NMP addition. In contrast, we report here that pyrophosphorolysis can occur in a millisecond time scale during the transition of Escherichia coli RNA polymerase from initiation to elongation at the psbA2 promoter. This rapid pyrophosphorolysis occurs during productive RNA synthesis as opposed to abortive RNA synthesis. Dissociation of σ or RNA extension beyond nine nucleotides dramatically reduces the rate of pyrophosphorolysis. We argue that the rapid pyrophosphorolysis allows iterative cycles of cleavage and re-synthesis of the 3' phosphodiester bond by the productive complexes in the early stage of transcription. This iterative process may provide an opportunity for the σ to dissociate from the RNA exit channel of the enzyme, enabling RNA to extend through the channel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190572PMC
http://dx.doi.org/10.1016/j.jmb.2019.04.020DOI Listing

Publication Analysis

Top Keywords

rna polymerase
12
rna
9
coli rna
8
phosphodiester bond
8
rapid pyrophosphorolysis
8
rna synthesis
8
pyrophosphorolysis
5
role pyrophosphorolysis
4
pyrophosphorolysis initiation-to-elongation
4
initiation-to-elongation transition
4

Similar Publications

LncRNA MANCR is downregulated in non-small cell lung cancer and predicts poor survival.

Discov Oncol

January 2025

Spinal Surgery Department, the Fourth People's Hospital of Jinan, No.50 Normal Road, Tianqiao District, Jinan, 250031, Shandong, China.

Background: It is known that genomic instability contributes to cancer development. Mitotically associated long non-coding RNA (MANCR) has been reported to promote genomic stability, suggesting its involvement in cancers. Therefore, this study was conducted to investigate the role of MANCR in non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

Engineering a DNA polymerase for modifying large RNA at specific positions.

Nat Chem

January 2025

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

The synthesis of large RNA with precise modifications at specific positions is in high demand for both basic research and therapeutic applications, but efficient methods are limited. Engineered DNA polymerases have recently emerged as attractive tools for RNA labelling, offering distinct advantages over conventional RNA polymerases. Here, through semi-rational designs, we engineered a DNA polymerase variant and used it to precisely incorporate a diverse range of modifications, including base modifications, 2'-ribose modifications and backbone modifications, into desired positions within RNA.

View Article and Find Full Text PDF

Cell-free systems are powerful synthetic biology technologies that can recapitulate gene expression and sensing without the complications of living cells. Cell-free systems can perform more advanced functions when genetic circuits are incorporated. Here we expand cell-free biosensing by engineering a highly specific isothermal amplification circuit called polymerase strand recycling (PSR), which leverages T7 RNA polymerase off-target transcription to recycle nucleic acid inputs within DNA strand displacement circuits.

View Article and Find Full Text PDF

Background: Supplementing choline and docosahexaenoic acid (DHA) to pregnant gilts modified fetal pig hepatic global DNA methylation induced by gestational malnutrition, suggesting that gene expression and regulation and its associated metabolic pathways are affected in the liver of offspring during growth and development.

Objective: To investigate the effect of maternal supplementation of choline, DHA and their interaction on hepatic mRNA expression, miRNA regulation and metabolic pathways in the fetal pigs born to malnourished mothers.

Methods: The abundance of mRNA and miRNA was profiled in fetal liver from sows with undernutrition supplemented with choline and DHA in a 2 × 2 factorial design.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is an arthritogenic alphavirus that has re-emerged to cause large outbreaks of human infections worldwide. There are currently no approved antivirals for treatment of CHIKV infection. Recently, we reported that the ribonucleoside analog 4'-fluorouridine (4'-FlU) is a highly potent inhibitor of CHIKV replication, and targets the viral nsP4 RNA dependent RNA polymerase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!