Preparation of azidophenyl-low molecular chitosan derivative micro particles for enhance drug delivery.

Int J Biol Macromol

Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea. Electronic address:

Published: July 2019

Systems for delivering damaged tissue by immobilization of a bioactive substance or a protein drug for rapid recovery of a patient are being studied. To immobilize drugs using natural polymer, photo-immobilization method has been designed. Immobilization through photo-reaction is a new technology that stabilizes drugs or growth factors for sustained release. Introduction of photo-reactive functional groups into biocompatible natural polymers produces materials applicable to the medical field. Since chitosan is a natural polymer with stability and biocompatibility, this study attempts to use chitosan as a mediator of drug delivery. In addition, If the form of the immobilized biomaterial is made into a micro-sized particle, it can be utilized as an injectable material in addition to the stability of the photo-immobilization. In photo-immobilization in particle form, the probability of exposure to the enzyme in the body is lower than if it is injected into the body in the conventional free state. In addition, since it can be freely injected into a desired target site, it can be used for various medical applications. Therefore, it is expected that various effects of growth factors and drugs can be utilized and additional effects can be obtained by photo-immobilization together with various effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.04.168DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
natural polymer
8
growth factors
8
preparation azidophenyl-low
4
azidophenyl-low molecular
4
molecular chitosan
4
chitosan derivative
4
derivative micro
4
micro particles
4
particles enhance
4

Similar Publications

Porous silicon (pSi) has gained substantial attention as a versatile material for various biomedical applications due to its unique structural and functional properties. Initially used as a semiconductor material, pSi has transitioned into a bioactive platform, enabling its use in drug delivery systems, biosensing, tissue engineering scaffolds, and implantable devices. This review explores recent advancements in macrostructural pSi, emphasizing its biocompatibility, biodegradability, high surface area, and tunable properties.

View Article and Find Full Text PDF

Regulation of Bone Remodeling by Metal-Phenolic Networks for the Treatment of Systemic Osteoporosis.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

Osteoporosis is a systemic metabolic disease that impairs bone remodeling by favoring osteoclastic resorption over osteoblastic formation. Nanotechnology-based therapeutic strategies focus on the delivery of drug molecules to either decrease bone resorption or increase bone formation rather than regulating the entire bone remodeling process, and osteoporosis interventions suffer from this limitation. Here, we present a multifunctional nanoparticle based on metal-phenolic networks (MPNs) for the treatment of systemic osteoporosis by regulating both osteoclasts and osteoblasts.

View Article and Find Full Text PDF

A Integrated Molecule Based on Ferritin Nanoplatforms for Inducing Tumor Ferroptosis with the Synergistic Photo/Chemodynamic Treatment.

ACS Appl Mater Interfaces

January 2025

Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China.

Ferroptosis combined with photodynamic therapy (PDT) has emerged as a powerful approach to induce cancer cell death by producing and accumulating lethal reactive oxygen species (ROS) in the tumor microenvironment (TME). Despite its efficacy and safety, challenges persist in delivering multiple drugs to the tumor site for enhanced antitumor efficacy and improved tissue targeting. Hence, we designed a method of inducing ferroptosis through laser-mediated and human homologation-specific efficient activation, which is also a ferroptosis therapy with higher safety through ROS-mediated.

View Article and Find Full Text PDF

Bacterial bots are potent vehicles in cancer theranostics where bacteria are used typically as cargos for drug delivery. However, living bacteria themselves may aid in their efficiency in killing the tissues. For example, living bacteria may be functionalized with magnetic and luminescent nanoparticles along with drugs in order to achieve the targeted delivery and release of payloads that would include the bacteria.

View Article and Find Full Text PDF

Enhanced bacterial cellulose production by indigenous isolates: Insights from mutagenesis and evolutionary techniques.

Int J Biol Macromol

January 2025

Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Ahmadabad Mostoufi Rd., Azadegan Highway, P. O. Box 33535-111, Tehran 3313193685, Iran.

Bacterial cellulose, with mechanical strength, high water absorption, and crystallinity, is used in eco-friendly packaging, wound dressings, and drug delivery systems. Despite its potential, industrial-scale production is limited by inefficiency and high costs, requiring high-yield strains and optimized growth conditions. This study found that indigenous isolates produce superior bacterial cellulose compared to standard strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!