AI Article Synopsis

  • Cardiac arrhythmias can occur after kidney injury, particularly following renal ischemia-reperfusion (I/R), and this study investigates the role of the NLRP3 immune sensor in this process.
  • Mice lacking NLRP3 or CASP1 did not show increased levels of IL-1β or the prolonged QJ intervals associated with arrhythmias seen in wild-type mice after renal I/R, suggesting a critical role of this pathway in cardiac electrical disturbances.
  • The study also indicates that macrophages may play a role as sensors of tissue injury, and treatments targeting IL-1β could be a potential therapeutic strategy to mitigate cardiac issues following renal injury.

Article Abstract

Aims: Cardiac arrhythmias are one of the most important remote complications after kidney injury. Renal ischemia reperfusion (I/R) is a major cause of acute renal injury predisposing to several remote dysfunctions, including cardiac electrical disturbance. Since IL-1β production dependent on NLRP3 represents a link between tissue malfunctioning and cardiac arrhythmias, here we tested the hypothesis that longer ventricular repolarization and arrhythmias after renal I/R depend on this innate immunity sensor.

Methods And Results: Nlrp3 and Casp1 mice reacted to renal I/R with no increase in plasma IL-1β, different from WT (wild-type) I/R. A prolonged QJ interval and an increased susceptibility to ventricular arrhythmias were found after I/R compared to Sham controls in wild-type mice at 15 days post-perfusion, but not in Nlrp3 or CASP1 I/R, indicating that the absence of NLRP3 or CASP1 totally prevented longer QJ interval after renal I/R. In contrast with WT mice, we found no renal atrophy and no renal dysfunction in Nlrp3 and Casp1 mice after renal I/R. Depletion of macrophages in vivo after I/R and a day before IL-1β peak (at 7 days post-perfusion) totally prevented prolongation of QJ interval, suggesting that macrophages might participate as sensors of tissue injury. Moreover, treatment of I/R-WT mice with IL-1r antagonist (IL-1ra) from 8 to 15 days post perfusion did not interfere with renal function, but reversed QJ prolongation, prevented the increase in susceptibility to ventricular arrhythmias and rescued a close to normal duration and amplitude of calcium transient.

Conclusion: Taken together, these results corroborate the hypothesis that IL-1β is produced after sensing renal injury through NRLP3-CASP1, and IL-1β on its turn triggers longer ventricular repolarization and increase susceptibility to cardiac arrhythmias. Still, they offer a therapeutic approach to treat cardiac arrhythmias that arise after renal I/R.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2019.04.025DOI Listing

Publication Analysis

Top Keywords

renal i/r
24
cardiac arrhythmias
20
nlrp3 casp1
16
renal
12
arrhythmias renal
12
i/r
11
i/r depend
8
renal injury
8
longer ventricular
8
ventricular repolarization
8

Similar Publications

Background: Fangji Huangqi Decoction (FJHQD), a famous Traditional Chinese Medicine (TCM) formula, has been widely applied in improving renal function. However, the interaction of bioactives from FJHQD with the targets involved in acute renal injury (AKI) has not been elucidated yet.

Purpose: A network pharmacology-based approach combined with molecular docking and in vitro and in vivo validation was performed to determine the bioactives, key targets, and potential pharmacological mechanism of FJHQD against AKI.

View Article and Find Full Text PDF

Renal ischemia-reperfusion (I/R) injury is a common clinical factor for acute kidney injury (AKI). A current study investigated the renoprotective effects of the trinitroglycerine (TNG) combination with chitosan nanoparticles (CNPs) on renal I/R-induced AKI. Rats were randomly assigned to five groups (n = 8/group): Sham, I/R, TNG (50 mg/kg) + I/R, CNPs (60 mg/kg) + I/R, and TNG-CNPs + I/R.

View Article and Find Full Text PDF

Zinc pretreatment for protection against intestinal ischemia-reperfusion injury.

World J Gastrointest Surg

December 2024

State Key Laboratory of Organ Failure Research, Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China.

Background: Intestinal ischemiareperfusion (I/R) injury (II/RI) is a critical condition that results in oxidative stress, inflammation, and damage to multiple organs. Zinc, an essential trace element, offers protective benefits in several tissues during I/R injury, but its effects on intestinal II/RI remain unclear.

Aim: To investigate the effects of zinc pretreatment on II/RI and associated multiorgan damage.

View Article and Find Full Text PDF

Purpose: To evaluate stone free rate (SFR) predictivity of three different scoring systems in patients with kidney stones larger than 20 millimeters undergoing retrograde intrarenal surgery(RİRS).

Methods: Digital records of a total of 166 patients were reviewed retrospectively. Epidemiological characteristics (age, gender, medical history) of the patients, stone and affected kidney characteristics (size, volume, location, density, opaque, presence of urinary system anomaly, presence of stones in different calyx, number of stones, lower pole stone, renal infundibulopelvic angle (IPA), renal infundibulopelvic length (RIL), hydronephrosis), and operative characteristics (preoperative ureteral stent, operation duration, postoperative residual fragments, hospitalization time and complications were recorded.

View Article and Find Full Text PDF

Introduction: Ischemia followed by reperfusion in organ transplantations can lead to ischemia-reperfusion (I-R) injury, which is associated with oxidative stress and inflammatory responses. Alpha-pinene is an organic terpene with well-known antioxidant, anti-inflammatory, and anti-apoptotic properties. This study examines the preventive effects of alpha-pinene against renal I-R-induced kidney dysfunction, oxidative and inflammatory status, apoptosis, and histopathology changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!