Background: Aortic stenosis (AS) is frequently associated with coronary artery disease (CAD). However, the best tool to functionally assess CAD in AS remains undetermined. Fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) have never been validated in AS.

Methods: FFR, iFR and stress single photon emission computed tomography (SPECT) were performed in a consecutive series of 28 patients with severe AS and 41 borderline coronary lesions during the work-up for valve replacement.

Results: Both FFR and iFR were correlated with an abnormal SPECT. At ROC analysis, FFR yielded an AUC = 0.91 with negative predictive value (NPV) = 95% in detecting ischemia according to SPECT. iFR showed significant worse agreement with myocardial perfusion imaging compared to FFR (59% vs 85%, p = 0.014). Specifically, a significant larger proportion of false positive measurements (negative SPECT and iFR < 0.89) was observed using iFR vs FFR: 39% vs 12%, p = 0.011. Using a pre-specified 0.82 cut-off, the iFR agreement with SPECT increased to 73%.

Conclusions: FFR yielded a good correlation with SPECT and a high NPV in detecting ischemia-provoking lesions. iFR diagnostic metrics were inferior compared with FFR and improved adopting a lower ischemic threshold.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2019.04.050DOI Listing

Publication Analysis

Top Keywords

myocardial perfusion
8
perfusion imaging
8
patients severe
8
aortic stenosis
8
ffr ifr
8
ffr
5
correlation intracoronary
4
intracoronary physiology
4
physiology myocardial
4
imaging patients
4

Similar Publications

Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.

View Article and Find Full Text PDF

Cardiogenic shock represents a critical condition in which the heart is unable to maintain adequate circulation leading to insufficient tissue perfusion and end-organ failure. Temporary mechanical circulatory support offers the potential to stabilize patients, provide a bridge-to-recovery, provide a bridge-to-decision, or facilitate definitive heart replacement therapies. Although randomized controlled trials have been performed in infarct-related cardiogenic shock and refractory cardiac arrest, the optimal timing, appropriate patient selection, and optimal implementation of these devices remain complex and predominantly based on observational data and expert consensus, especially in non-ischaemic shock.

View Article and Find Full Text PDF

Adenosine is extensively utilized in myocardial stress perfusion imaging for the detection and risk stratification of coronary artery disease. It has a well-established safety profile. The majority of the undesirable effects experienced during adenosine infusion are transient (owing to its brief half-life of ~10 s) and arise from the stimulation of receptors in the atrio-ventricular (AV) node (AV block) and bronchial smooth muscles (bronchospasm).

View Article and Find Full Text PDF

Purposes: The objective was to evaluate the accuracy of a novel CT dynamic angiographic imaging (CT-DAI) algorithm for rapid fractional flow reserve (FFR) measurement in patients with coronary artery disease (CAD).

Materials And Methods: This retrospective study included 14 patients (age 58.5 ± 10.

View Article and Find Full Text PDF

Background: Cardiovascular diseases (CVDs) continue to be the world's greatest cause of death. To evaluate heart function and diagnose coronary artery disease (CAD), myocardial perfusion imaging (MPI) has become essential. Artificial intelligence (AI) methods have been incorporated into diagnostic methods such as MPI to improve patient outcomes in recent years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!