Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Since large bone defects cannot be healed by the body itself, continuous effort is put into the development of 3D scaffolds for bone tissue engineering. One method to fabricate such scaffolds is selective laser sintering (SLS). However, there is a lack of solvent-free prepared microparticles suitable for SLS. Hence, the aim of this study was to develop a solvent-free polylactide/calcium carbonate composite powder with tailored material properties for SLS. Four composite powders with a composition of approximately 75 wt% polylactide (PLLA as well as PDLLA) and 25 wt% calcium carbonate (calcite) were prepared by a milling process based on GMP standards. Four different grades of polylactide were chosen to cover a broad inherent viscosity range of 1.0-3.6 dl/g. The composite material with the lowest inherent viscosity (1.0 dl/g) showed the best processability by SLS. This was caused by the small polymer particle diameter (50 μm) and the small zero-shear melt viscosity (400 Pa·s), which led to fast sintering. The SLS process parameters were developed to achieve low micro-porosity (approx. 2%) and low polymer degradation (no measurable decrease of the inherent viscosity). A biaxial bending strength of up to 75 MPa was achieved. Cell culture assays indicated good viability of MG-63 osteoblast-like cells on the SLS specimens. Finally, the manufacture of 3D scaffolds with interconnected pore structure was demonstrated. After proving the biocompatibility of the material, the developed scaffolds could have great potential to be used as patient-specific bone replacement implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2019.03.101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!