Tantalum nanoparticles reinforced polyetheretherketone shows enhanced bone formation.

Mater Sci Eng C Mater Biol Appl

Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China. Electronic address:

Published: August 2019

AI Article Synopsis

Article Abstract

Polyetheretherketone (PEEK) has been used in orthopedic surgery for several decades. Numerous methods were invented to alter the properties of PEEK. By adding nanoparticles, fibers, etc., elastic modulus and strength of PEEK can be changed to meet certain demand. In this study, tantalum (Ta), a promising metal, was introduced to modify the properties of PEEK, in which PEEK was reinforced with different contents of tantalum nanoparticles (from 1 wt% to 9 wt%). Mechanical properties and biological functions (both in vitro and in vivo) were then investigated. The highest elastic modulus and compressive strength were observed in 3%Ta-PEEK. Cell experiments as cell adhesion, collagen secretion, biomineralization and osteogenesis related gene expression showed preferable results in 3%Ta-PEEK and 5%Ta-PEEK. Improved bone integration was shown in 3%Ta-PEEK and 5%Ta-PEEK in vivo. Above all, enhanced mechanical properties and promoted bone formation were proved for 3%Ta-PEEK and 5%Ta-PEEK compared to others groups both in vitro and in vivo, suggesting that the addition of tantalum nanoparticles modified the osseointegration ability of PEEK. This composite of tantalum and PEEK could have a clinical potential for orthopedic implants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.03.091DOI Listing

Publication Analysis

Top Keywords

tantalum nanoparticles
12
3%ta-peek 5%ta-peek
12
bone formation
8
properties peek
8
elastic modulus
8
mechanical properties
8
vitro vivo
8
peek
7
tantalum
5
nanoparticles reinforced
4

Similar Publications

Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects.

View Article and Find Full Text PDF

Enhancing the CO Oxidation Performance of Copper by Alloying with Immiscible Tantalum.

ACS Appl Mater Interfaces

January 2025

School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.

Copper-tantalum (Cu-Ta) immiscible alloy nanoparticles (NPs) have been the subject of extensive research in the field of structural materials, due to their exceptional nanostructural stability and high-temperature creep properties. However, Cu is also a highly active oxidation catalyst due to its abundant valence changes. In this study, we have for the first time obtained homogeneous CuTa ( = 0.

View Article and Find Full Text PDF

Monodisperse films of spherical tantalum oxide (V) nanoclusters and spherical tantalum nanoclusters with a tantalum oxide shell with diameters of 1.4-8 nm were obtained by magnetron sputtering. The size of the deposited nanoclusters was controlled using a quadrupole mass filter.

View Article and Find Full Text PDF

Enhancing Chordoma Radiotherapy: Ta@PVP Nanoparticles as Potent Radiosensitizers.

ACS Appl Mater Interfaces

January 2025

CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.

Surgical resection and high-dose radiotherapy constitute the standard therapeutic approaches for chordoma. However, the efficacy of radiotherapy is often compromised by the tumor microenvironment's hypoxic conditions, which confer radiation resistance, and by the potential damage to adjacent spinal cord and neural structures from elevated radiation doses. To address these challenges, we employed high biocompatible poly(vinylpyrrolidone)-modified tantalum nanoparticles (Ta@PVP NPs) as a potent radiosensitizer to augment the radiotherapy sensitivity of chordoma.

View Article and Find Full Text PDF

Protection Materials on III-V Semiconductors for Photoelectrochemical CO Reduction.

J Phys Chem C Nanomater Interfaces

December 2024

Department of Physics, Technical University of Denmark, Fysikvej 307, 2800 Kongens Lyngby, Denmark.

Article Synopsis
  • * A specific structure with 150 nm TiO, 8 nm TaO, and 150 nm copper nanocubes showed a faradaic efficiency of 24% under certain conditions when integrated into a photoelectrochemical flow reactor.
  • * Directly attaching copper nanocubes to just the TiO layer led to hydrogen production instead of CO reduction, and further studies indicate that the loss of selectivity is related to small copper particle redeposition without changes in the TiO's
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!