AI Article Synopsis

Article Abstract

Background: Cell differentiation is mediated by synchronized waves of coordinated expression for hundreds to thousands of genes, and must be regulated to produce complex tissues and phenotypes. For many animal species, sexual selection has driven the development of elaborate male ornaments, requiring sex-specific differentiation pathways. One such male ornament is the pheromone-producing mental gland of the red-legged salamander (Plethodon shermani). Mental gland development follows an annual cycle of extreme hypertrophy, production of pheromones for the ~ 2 month mating season, and then complete resorption before repeating the process in the following year. At the peak of the mating season, the transcriptional and translational machinery of the mental gland are almost exclusively redirected to the synthesis of rapidly evolving pheromones. Of these pheromones, Plethodontid Modulating Factor (PMF) has experienced an unusual history: following gene duplication, the protein coding sequence diversified from positive sexual selection while the untranslated regions have been conserved by purifying selection. The molecular underpinnings that bridge the processes of gland hypertrophy, pheromone synthesis, and conservation of the untranslated regions remain to be determined.

Results: Using Illumina sequencing, we prepared a de novo transcriptome of the mental gland at six stages of development. Differential expression analysis and immunohistochemistry revealed that the mental gland initially adopts a highly proliferative, almost tumor-like phenotype, followed by a rapid increase in pheromone mRNA and protein. One likely player in this transition is Cold Inducible RNA Binding Protein (CIRBP), which selectively and cooperatively binds the highly conserved PMF 3' UTR. CIRBP, along with other proteins associated with stress response, have seemingly been co-opted to aid in mental gland development by helping to regulate pheromone synthesis.

Conclusions: The P. shermani mental gland utilizes a complex system of transcriptional and post-transcriptional gene regulation to facilitate its hypertrophication and pheromone synthesis. The data support the evolutionary interplay of coding and noncoding segments in rapid gene evolution, and necessitate the study of co-evolution between pheromone gene products and their transcriptional/translational regulators. Additionally, the mental gland could be a powerful emerging model of regulated tissue proliferation and subsequent resorption within the dermis and share molecular links to skin cancer biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487043PMC
http://dx.doi.org/10.1186/s12861-019-0190-zDOI Listing

Publication Analysis

Top Keywords

mental gland
36
gland
10
mental
9
annual cycle
8
gene regulation
8
red-legged salamander
8
gland hypertrophy
8
rapidly evolving
8
evolving pheromones
8
sexual selection
8

Similar Publications

Clinical Insight into Congenital Hypothyroidism Among Children.

Children (Basel)

January 2025

Department of Pediatrics, Division of Pediatric Endocrinology, Izmir Faculty of Medicine, University of Health Sciences, 35210 Izmir, Turkey.

Molecular, genetic, and technological advances have led to increased knowledge regarding neonatal thyroid hormone metabolism disorders. Maternal and fetal hypothyroidism, which can cause psychomotor dysfunction syndromes or low IQ levels, can lead to brain damage, reduced fetal growth and incidental fetal death. The treatment of congenital hypothyroidism detected by screening programs performed during the neonatal period provides normalization of growth, IQ levels, and the physical, mental, and motor development of infants.

View Article and Find Full Text PDF

Background: Breast cancer-related lymphedema (BCRL) is one of the common complications after breast cancer surgery. It can easily lead to limb swelling, deformation and upper limb dysfunction, which has a serious impact on the physical and mental health and quality of life of patients. Previous studies have mostly used statistical methods such as linear regression and logistic regression to analyze the influencing factors, but all of them have certain limitations.

View Article and Find Full Text PDF

Anterior pituitary gland volume mediates associations between adrenarche and changes in transdiagnostic symptoms in youth.

Dev Cogn Neurosci

January 2025

Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.

The pituitary gland (PG) plays a central role in the production and secretion of pubertal hormones, with documented links to the increase in mental health symptoms during adolescence. Although literature has largely focused on examining whole PG volume, recent findings have demonstrated associations among pubertal hormone levels, including dehydroepiandrosterone (DHEA), PG subregions, and mental health symptoms during adolescence. Despite the anterior PG's role in DHEA production, studies have not yet examined potential links with transdiagnostic symptomology (i.

View Article and Find Full Text PDF

Toward At-Home and Wearable Monitoring of Female Hormones: Emerging Nanotechnologies and Clinical Prospects.

ACS Sens

January 2025

School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.

Steroid hormones, especially progesterone (P), estradiol (E), and testosterone (T), are key bioactive regulators in various female physiological processes, including growth and development, ovulation, and the reproductive cycle, as well as metabolism and mental health. As lipophilic molecules produced in sex glands, these steroid female hormones can be transported through blood vessels into various body fluids such as saliva, sweat, and urine. However, the ultralow concentration of steroid hormones down to picomolar (pM) level necessitates great demands for ultrasensitive but low-cost analytic tools to implement accurate, point-of-care or even continuous monitoring in a user-friendly fashion.

View Article and Find Full Text PDF

Stress occurs as a reaction to mental and emotional pressure, anxiety, or scarring. Chronic stress is defined as constant submission to these moments. It can affect several body systems, increase blood pressure, and weaken immunity, thereby interfering with physiological health processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!