An expedient and eco-friendly synthesis of 1-aryl/heteroaryl-[1,2,4]-triazolo[4,3-a]quinoxalin-4(5H)-ones (4) has been accomplished via iodobenzene diacetate mediated oxidative intramolecular cyclization of 3-(2-(aryl/heteroarylidene)hydrazinyl)-quinoxalin-2(1H)-ones (3). Ten synthesized compounds 3 and 4 (10-40 μg) on irradiation with UV light at λ 312 nm could lead to cleavage of supercoiled pMaxGFP DNA (Form I) into the relaxed DNA (Form II) without any additive. Further, DNA cleaving ability of triazoles was quantitatively evaluated and was found to be dependent on its structure, concentration, and strictly on photoirradiation time. Mechanistic investigations using several additives as potential inhibitors/activator revealed that the DNA photocleavage reaction involves Type-I pathway leading to formation of superoxide anion radicals (O) as the major reactive oxygen species responsible for photocleavage process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2019.102932DOI Listing

Publication Analysis

Top Keywords

dna form
8
dna
5
design synthesis
4
synthesis photoinduced
4
photoinduced dna
4
dna cleavage
4
cleavage studies
4
studies [124]-triazolo[43-a]quinoxalin-45h-ones
4
[124]-triazolo[43-a]quinoxalin-45h-ones expedient
4
expedient eco-friendly
4

Similar Publications

Autosomal dominant CDK13-related disease is characterized by congenital heart defects, dysmorphic facial features, and intellectual developmental disorder (CHDFIDD). Heterozygous pathogenic variants, particularly missense variants in the kinase domain, have previously been described as disease causing. Using the determination of a methylation pattern and comparison with an established episignature, we reveal the first hypomorphic variant in the kinase domain of CDK13, leading to a never before described autosomal recessive form of CHDFIDD in a boy with characteristic features.

View Article and Find Full Text PDF

Assessment of various etiological factors for oral squamous cell carcinoma in non-habit patients- a cross sectional case control study.

BMC Oral Health

January 2025

Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu, 600077, India.

Background: Oral squamous cell carcinoma (OSCC) is one of the most prevalent oral cancers in the world. The major etiological factors are considered to be tobacco and alcohol. However, the etiological factors for non-habit associated oral squamous cell carcinoma (NHOSCC) remains an enigma.

View Article and Find Full Text PDF

Background: Lung cancer has high morbidity and mortality rates, which results in a poor prognosis. Cuproptosis is a novel cell death mechanism. The aim of this study was to examine the biological characteristics and clinical significance of genes associated with cuproptosis in lung adenocarcinoma (LUAD), and to understand the molecular mechanisms underlying the occurrence and progression of LUAD.

View Article and Find Full Text PDF

Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.

Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.

View Article and Find Full Text PDF

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!