The impact caused by dye effluent discharge on the environment is well known. The study explores a hybrid method of combining Fenton oxidation with biological treatment by a defined bacterial consortium for the biodegradation of an effluent containing toxic azo dye (acid blue 113). In actual treatment process, the fluctuation in toxic load and presence of other dyeing chemical inhibits the activity of the bacterial consortium. An effective pre-treatment of effluent would ensure the optimal degradation irrespective of its initial load. The pre-treatment of dye effluent with Fenton (HO & Fe), considerably reduced the dye concentration by 40% and a maximum dye degradation of 85% (i.e., 45% by biodegradation) was achieved in shake flask. The biodegradation process was investigated in a bioreaction calorimeter (BioRc1e), the heat profile, bioenergetics data along with CER (Carbon dioxide emission rate) and OUR (Oxygen uptake rate) provided vital information for the effective commercial scale up. Enhanced degradation of up to 97% was achieved in BioRc1, the CER and OUR profile follows the power-time profile alluding that the heat generated is the resultant effect of bacterial metabolic activity. In real dye bath effluent the Fenton pre-oxidized biodegradation reaction showed a degradation efficacy of 89.5% and considerable COD reduction of 93.7%. Fluorescence-activated cell sorting (FACS) analysis revealed a better bacterial cell proliferation in pre-treated experiment and gas chromatography and mass spectrum analysis were used for prediction of metabolites. The unique combination of Fenton and the microbial consortia is a competitive technology for industrial effluent treatment processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2019.04.075DOI Listing

Publication Analysis

Top Keywords

dye effluent
12
bacterial consortium
12
effluent fenton
8
dye
7
effluent
7
biodegradation
5
bacterial
5
biodegradation tannery
4
tannery dye
4
effluent fenton's
4

Similar Publications

Effluents containing synthetic anionic dyes can pose a risk to ecosystems, and they must be treated before their release to the environment. Biosorption, a simple and effective process, may be a promising solution for treating these effluents. In this work, chitosan beads were crosslinked with epichlorohydrin to produce a highly stable and performant biosorbent to remove Brilliant Blue FCF dye.

View Article and Find Full Text PDF

Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.

View Article and Find Full Text PDF

Layered double hydroxides (LDH) are compounds with unique structures of hydroxide functional groups on their surfaces, and they have the proper arrangement of divalent and trivalent cations to adjust their unique catalytic actions. LDH was synthesized utilizing the co-precipitation technique and was thermally treated at 300 °C. The prepared compounds were chemically and structurally elucidated using FT-IR, XRD, SEM, BET, TG-DTA, and XPS characterization.

View Article and Find Full Text PDF

High performance ozone nanobubbles based advanced oxidation processes (AOPs) for degradation of organic pollutants under high pollutant loading.

J Environ Manage

January 2025

Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12 Str., 80-233, Gdansk, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:

Advanced Oxidation Processes (AOPs) have proven to be an effective solution for chemical wastewater treatment, particularly for degradation of organic pollutants, especially dyes. Ozonation is recognized as one of the most prevalent AOPs. Nevertheless, some cases show a lowered efficiency of O utilization which is attributed to its inadequate distribution in the treated water causing low residence time, low mass transfer coefficient as well as shorter half-life.

View Article and Find Full Text PDF

A set of nCN/WO composites was synthesized through a simple thermal treatment for gold recovery from the simulated effluent of a non-cyanide-based plating bath. The obtained results exhibited that all nCN/WO composites demonstrated a higher photocatalytic activity for gold recovery than their pristine components due to the formation of nanocomposites which paved a convenient pathway for charge transfer. Among all synthesized composites, the 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!