The primary somatosensory cortex (S1) comprises a number of functionally distinct regions, reflecting the diversity of somatosensory receptor submodalities innervating the body. In particular, two spatially and functionally distinct nociceptive regions have been described in primate S1 (Vierck et al., 2013; Whitsel et al., 2019). One region is located mostly in Brodmann cytoarchitectonic area 1, where a subset of neurons exhibit functional characteristics associated with myelinated Aδ nociceptors and perception of 1st/sharp, discriminative pain. The second region is located at the transition between S1 and primary motor cortex (M1) in area 3a, where neurons exhibit functional characteristics associated with unmyelinated C nociceptors and perception of 2nd/slow, burning pain. To test the hypothesis that in rats the transitional zone (TZ) - which is a dysgranular region at the transition between M1 and S1 - is the functional equivalent of the nociresponsive region of area 3a in primates, extracellular spike discharge activity was recorded from TZ neurons in rats under general isoflurane anesthesia. Thermonoxious stimuli were applied by lowering the contralateral forepaw or hindpaw into a 48-51 °C heated water bath for 5-10 s. Neurons in TZ were found to be minimally affected by non-noxious somatosensory stimuli, but highly responsive to thermonoxious skin stimuli in a slow temporal summation manner closely resembling that of nociresponsive neurons in primate area 3a. Selective inactivation of TZ by topical lidocaine application suppressed or delayed the nociceptive withdrawal reflex, suggesting that TZ exerts a tonic facilitatory influence over spinal cord neurons producing this reflex. In conclusion, TZ appears to be a rat homolog of the nociresponsive part of monkey area 3a. A possibility is considered that this region might be primarily engaged in autonomic aspects of nociception.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266168 | PMC |
http://dx.doi.org/10.1016/j.brainres.2019.04.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!