Background: Socioeconomic status is associated with differences in risk factors for cardiovascular disease incidence and outcomes, including mortality. However, it is unclear whether the associations between cardiovascular disease and common measures of socioeconomic status-wealth and education-differ among high-income, middle-income, and low-income countries, and, if so, why these differences exist. We explored the association between education and household wealth and cardiovascular disease and mortality to assess which marker is the stronger predictor of outcomes, and examined whether any differences in cardiovascular disease by socioeconomic status parallel differences in risk factor levels or differences in management.
Methods: In this large-scale prospective cohort study, we recruited adults aged between 35 years and 70 years from 367 urban and 302 rural communities in 20 countries. We collected data on families and households in two questionnaires, and data on cardiovascular risk factors in a third questionnaire, which was supplemented with physical examination. We assessed socioeconomic status using education and a household wealth index. Education was categorised as no or primary school education only, secondary school education, or higher education, defined as completion of trade school, college, or university. Household wealth, calculated at the household level and with household data, was defined by an index on the basis of ownership of assets and housing characteristics. Primary outcomes were major cardiovascular disease (a composite of cardiovascular deaths, strokes, myocardial infarction, and heart failure), cardiovascular mortality, and all-cause mortality. Information on specific events was obtained from participants or their family.
Findings: Recruitment to the study began on Jan 12, 2001, with most participants enrolled between Jan 6, 2005, and Dec 4, 2014. 160 299 (87·9%) of 182 375 participants with baseline data had available follow-up event data and were eligible for inclusion. After exclusion of 6130 (3·8%) participants without complete baseline or follow-up data, 154 169 individuals remained for analysis, from five low-income, 11 middle-income, and four high-income countries. Participants were followed-up for a mean of 7·5 years. Major cardiovascular events were more common among those with low levels of education in all types of country studied, but much more so in low-income countries. After adjustment for wealth and other factors, the HR (low level of education vs high level of education) was 1·23 (95% CI 0·96-1·58) for high-income countries, 1·59 (1·42-1·78) in middle-income countries, and 2·23 (1·79-2·77) in low-income countries (p<0·0001). We observed similar results for all-cause mortality, with HRs of 1·50 (1·14-1·98) for high-income countries, 1·80 (1·58-2·06) in middle-income countries, and 2·76 (2·29-3·31) in low-income countries (p<0·0001). By contrast, we found no or weak associations between wealth and these two outcomes. Differences in outcomes between educational groups were not explained by differences in risk factors, which decreased as the level of education increased in high-income countries, but increased as the level of education increased in low-income countries (p<0·0001). Medical care (eg, management of hypertension, diabetes, and secondary prevention) seemed to play an important part in adverse cardiovascular disease outcomes because such care is likely to be poorer in people with the lowest levels of education compared to those with higher levels of education in low-income countries; however, we observed less marked differences in care based on level of education in middle-income countries and no or minor differences in high-income countries.
Interpretation: Although people with a lower level of education in low-income and middle-income countries have higher incidence of and mortality from cardiovascular disease, they have better overall risk factor profiles. However, these individuals have markedly poorer health care. Policies to reduce health inequities globally must include strategies to overcome barriers to care, especially for those with lower levels of education.
Funding: Full funding sources are listed at the end of the paper (see Acknowledgments).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S2214-109X(19)30045-2 | DOI Listing |
Sci Rep
December 2024
National Centre for Diseases Prevention and Health Promotion, Istituto Superiore di Sanità, Rome, Italy.
This study aimed to calculate Italy's first national maternal mortality ratio (MMR) through an innovative record-linkage approach within the enhanced Italian Obstetric Surveillance System (ItOSS). A record-linkage retrospective cohort study was conducted nationwide, encompassing all women aged 11-59 years with one or more hospitalizations related to pregnancy or pregnancy outcomes from 2011 to 2019. Maternal deaths were identified by integrating data from the Death Registry and national and regional Hospital Discharge Databases supported by the integration of findings from confidential enquiries conducted through active surveillance.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Sacubitril/valsartan, a first-in-class angiotensin receptor neprilysin inhibitor, is widely used to treat heart failure. Despite its efficacy, sacubitril/valsartan inevitably causes adverse events such as hypotension, renal dysfunction, hyperkalemia, and angioedema. Sacubitril/valsartan-associated ototoxicity is often underreported in clinical studies and real-world settings.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Applied Mathematics, Faculty of Mathematical Science, Ferdowsi University of Mashhad, Mashhad, Iran.
This study presents a web application for predicting cardiovascular disease (CVD) and hypertension (HTN) among mine workers using machine learning (ML) techniques. The dataset, collected from 699 participants at the Gol-Gohar mine in Iran between 2016 and 2020, includes demographic, occupational, lifestyle, and medical information. After preprocessing and feature engineering, the Random Forest algorithm was identified as the best-performing model, achieving 99% accuracy for HTN prediction and 97% for CVD, outperforming other algorithms such as Logistic Regression and Support Vector Machines.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
B-type natriuretic peptide (BNP) levels accurately reflect the degree of cardiac overload in heart failure. Considering cardiac morphology and intracardiac pressure, including the left ventricular end-systolic volume index (LVESVI) and left ventricular end-diastolic volume index (LVEDVI), is essential for cardiac overload assessment. These indexes influence plasma BNP levels, and high heart rate is likely associated with cardiac morphology.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
The triglyceride to high density lipoprotein cholesterol (TG/HDL-C) ratio has been consistently linked with the risk of coronary heart disease (CHD). Nevertheless, there is a paucity of studies focusing on acute coronary syndrome (ACS) patients undergoing percutaneous coronary intervention (PCI) or experiencing bleeding events. The study encompassed 17,643 ACS participants who underwent PCI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!