A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sphingosine kinase 1 knockout alleviates hepatic ischemia/reperfusion injury by attenuating inflammation and oxidative stress in mice. | LitMetric

Sphingosine kinase 1 knockout alleviates hepatic ischemia/reperfusion injury by attenuating inflammation and oxidative stress in mice.

Hepatobiliary Pancreat Dis Int

Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical College of Nanjing Medical University, Nanjing 210008, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China. Electronic address:

Published: June 2019

Background: Hepatic ischemia/reperfusion (I/R) injury remains a significant problem in clinical practice. Sphingosine kinase 1 (SphK1) phosphorylates sphingosine to sphingosine-1-phosphate (S1P) which participates in multiple bioactive processes. However, little is known about the role of SphK1 in hepatic I/R injury. This study aimed to investigate the effect of SphK1 knockout on liver I/R injury and to explore underlying mechanisms.

Methods: SphK1 knockout and wild type mice were subjected to 70% partial hepatic I/R. Serum alanine aminotransferase was determined to indicate the degree of liver damage. Hematoxylin-eosin staining and TUNEL assay were used to assess histological changes and hepatocellular apoptosis, respectively. Immunohistochemistry was performed to detect the expression and translocation of phosphorylated p65 and signal transducer and activator of transcription 3 (STAT3). Western blotting was used to determine the expression of S1P receptor 1 (S1PR1), phosphorylated p65 and STAT3. Real-time PCR was used to demonstrate the changes of proinflammatory cytokines. Oxidative stress markers were also determined through biochemical assays.

Results: SphK1 knockout significantly ameliorated I/R-induced liver damage, mitigated liver tissue necrosis and apoptosis compared with wild type control. I/R associated inflammation was alleviated in SphK1 knockout mice as demonstrated by attenuated expression of S1PR1 and reduced phosphorylation of nuclear factor kappa B p65 and STAT3. The proinflammatory cytokines interleukin-1β, interleukin-6 and tumor necrosis factor-α were also inhibited by SphK1 genetic deletion. The oxidative stress markers were lower in SphK1 knockout mice after I/R injury than wild type mice.

Conclusions: Knockout of SphK1 significantly alleviated damage after hepatic I/R injury, possibly through inhibiting inflammation and oxidative stress. SphK1 may be a novel and potent target in clinical practice in I/R-related liver injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hbpd.2019.04.001DOI Listing

Publication Analysis

Top Keywords

i/r injury
20
sphk1 knockout
20
oxidative stress
16
hepatic i/r
12
wild type
12
sphk1
10
sphingosine kinase
8
hepatic ischemia/reperfusion
8
inflammation oxidative
8
clinical practice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!