The purpose of this study was to investigate knee biomechanics in uphill walking on slopes of 5°, 10° and 15° for total knee replacement (TKR) patients. Twenty-five post-TKR patients and ten healthy controls performed five walking trials on level ground and different slopes on an instrumented ramp system. A 2 × 2 × 4 (limb × group × incline slope) mixed model ANOVA was used to examine selected variables. The peak knee extension moment (KEM) was greater in 15° uphill walking compared to level, 5° and 10° uphill walking. TKR patients had lower peak KEM and smaller knee extension range of motion than healthy controls in all walking conditions. The Replaced Limb showed lower peak KEM in 10° and 15° uphill walking than the Non-replaced Limb and smaller knee extension range of motion (ROM) in 10° uphill walking. Knee extension and abduction ROM increased with increased incline angles. The greater peak loading-response vertical ground reaction force was found in level walking compared to three levels of uphill walking. The peak loading-response knee abduction moment was greater in level walking compared to 10° and 15° uphill walking. However, the medial knee contact force was greater in non-replaced limb compared to replaced limb in 10° and 15° uphill walking. The results suggest 5° uphill walking may have the potential to become a safe exercise for unilateral TKR patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2019.04.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!