Bayesian mixture models, often termed latent class models, allow users to estimate the diagnostic accuracy of tests and true prevalence in one or more populations when the positive and/or negative reference standards are imperfect. Moreover, they allow the data analyst to show the superiority of a novel test over an old test, even if this old test is the (imperfect) reference standard. We use published data on Toxoplasmosis in pigs to explore the effects of numbers of tests, numbers of populations, and dependence structure among tests to ensure model (local) identifiability. We discuss and make recommendations about use of priors, sensitivity analysis, model identifiability and study design options, and strongly argue for the use of Bayesian mixture models as a logical and coherent approach for estimating the diagnostic accuracy of two or more tests.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prevetmed.2019.01.010DOI Listing

Publication Analysis

Top Keywords

diagnostic accuracy
12
imperfect reference
8
bayesian mixture
8
mixture models
8
accuracy tests
8
test test
8
tests
5
gold standards
4
standards bayes
4
bayes implementing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!