Objectives: Radon, a natural radiation, is the leading environmental cause of lung cancer in never-smokers. However, the radon exposure impact on the mutational landscape and tumor mutation burden (TMB) of lung cancer in never-smokers has not been explored. The aim of this study was to investigate the mutational landscape of lung adenocarcinoma in never-smokers who were exposed to various degrees of residential radon.
Materials And Methods: To investigate the effect of indoor radon exposure, we estimated the cumulative exposure to indoor radon in each house of patients with lung cancer with a never-smoking history. Patients with at least 2 year-duration of residence before the diagnosis of lung adenocarcinoma were included. Patients were subgrouped based on the median radon exposure level (48 Bq/m): radon-high vs. radon-low and targeted sequencing of tumor and matched blood were performed in all patients.
Results: Among 41 patients with lung adenocarcinoma, the TMB was significantly higher in the radon-high group than it was in the radon-low group (mean 4.94 vs. 2.6 mutations/Mb, P = 0.01). The recurrence rates between radon-high and radon-low group did not differ significantly. Mutational signatures of radon-high tumors showed features associated with inactivity of the base excision repair and DNA replication machineries. The analysis of tumor evolutionary trajectories also suggested a series of mutagenesis induced by radon exposure. In addition, radon-high tumors revealed a significant protein-protein interaction of genes involved in DNA damage and repair (P < 0.001).
Conclusions: Indoor radon exposure increased the TMB in never-smoker patients with lung adenocarcinoma and their mutational signature was associated with defective DNA mismatch repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lungcan.2019.04.002 | DOI Listing |
Front Public Health
December 2024
School of Preventive Medicine, Shandong First Medical University (Institute of Radiation Medicine, Shandong Academy of Medical Sciences), Jinan, Shandong, China.
Background: Radon, a colorless and odorless radioactive gas, poses serious health risks. It is the second leading cause of lung cancer and notably increases lung cancer risk in smokers. Although previous epidemiological studies have mainly examined lung cancer rates in miners, the effects of radon on genomic stability and its molecular mechanisms are not well understood.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Aomori, Japan.
Radon (Rn) and thoron (Rn) were reported as the highest contributors to natural radiation received by humans. Furthermore, radon has been stated as the second-highest cause of lung cancer. The concentrations of U and Th (the parent nuclide of radon and thoron, respectively) in nature vary with geological conditions and can be enhanced by human activities.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
School of Nuclear and Allied Sciences, University of Ghana, Atomic Campus, P.O. Box LG 80 Legon, Accra, Ghana.
Excavation of terrestrial surface of the Earth could enhance the chance of exposure to radon while gases in the underground get access to escape. This study was aimed to assess the level of radon concentration from soil samples of quarrying sites at Hakim Gara in Ethiopia using CR-39 detectors in sealed container technique. The results of the measured radon concentration level were ranging from 164.
View Article and Find Full Text PDFRadiat Prot Dosimetry
December 2024
Radiological Physics Group, Universidad Nacional de Colombia, 65 Avenue 59A St 110, 050034, Medellín, Colombia.
Environmental measurements of Radon and its progeny were carried out in a gold mining area in the department of Antioquia, Colombia. Radon concentration measurements were carried out during 2 y in seven different measurement points in three types of geological zones, by using EPERM electret chambers and DOSEman Pro detectors at each point. Radon concentration values between 858 ± 59 Bq m-3 and 2469 ± 158 Bq m-3 and an equilibrium factor between 0.
View Article and Find Full Text PDFJ Environ Radioact
December 2024
Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium.
A soil-vegetation-atmospheric transfer (SVAT) model for radon and its progeny is presented to improve process-level understanding of the role of forests in taking-up radionuclides from soil radon outgassing. A dynamic system of differential equations couples soil, tree (Scots pine) and atmospheric processes, treating the trees as sources, sinks and conduits between the atmosphere and the soil. The model's compartments include a dual-layer soil column undergoing hydrological and solute transport, the tree system (comprising roots, wood, litter, and foliage) and the atmosphere, with physical processes governing the transfers of water and radon products between these compartments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!