Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A flow-through colorimetric assay for detection of nucleic acids in plasma is reported. The proposed assay features an array of four polyvinylidene fluoride (PVDF) membranes impregnated with cationic poly (3-alkoxy-4-methylthiophene) (PT) as an optical reporter. The sensing strategy is based on monitoring the changes in optical properties of PT, upon complexation with target nucleic acids in the presence and in the absence of their corresponding complementary peptide nucleic acids (PNAs). As a proof of concept, the proposed methodology is validated using two biomarkers; lung cancer associated microRNA (mir21) and hepatitis B virus DNA (HBV-DNA). The flow-through colorimetric assay enabled detection of mir21 and HBV-DNA in plasma without requiring tedious sample pre-treatment and clean up protocols. Colorimetric responses for mir21 and HBV-DNA were obtained at nanomolar concentrations over five orders of magnitudes (from 1 nM to 10 μM), with a limit of detection of ∼0.6 nM and ∼2 nM in DI water and plasma, respectively. A logic gate system was developed to utilize the colorimetric assay responses as inputs for discrimination of mir21 and HBV-DNA and subsequently to obtain a profile of nucleic acids in samples that exceed respective clinical threshold limits, thereby enabling rapid and point of care (POC) disease diagnosis. Furthermore, the proposed methodology can be utilized for detection of a large number of nucleic acids in plasma by extending the array of PT impregnated membranes incorporated with their corresponding complementary PNAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2019.03.036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!